960化工网/ 文献/ 论文详情

Enhancing Stability and Efficiency of Perovskite Solar Cells with a Bilayer Hole Transporting Layer of Nickel Phthalocyanine and Poly(3-Hexylthiophene)

HyeonwooKim,DoYoonLee,JihooLim,JongbeomKim,JaewangPark,JanSeidel,JaeSungYun,SangIlSeok
Advanced Energy Materials Pub Date : 07/26/2023 00:00:00 , DOI:10.1002/aenm.202301046
Abstract
To expedite the commercialization of perovskite solar cells (PSCs), researchers are exploring the feasibility of employing nickel phthalocyanine (NiPc) as a hole transport material (HTM) due to its cost-effectiveness, excellent thermal stability, and suitability for solution coating. However, the low LUMO energy level of the NiPc may limit its ability to block photoelectrons generated in the perovskite layer from recombining with holes, which can reduce the overall efficiency of the solar cell. One solution is to use cascaded bilayers with HTMs that have relatively higher LUMO levels. In this study, a bilayer consisting of NiPc and poly(3-hexylthiophene) (P3HT) is employed as the HTM, where the P3HT exhibits vertical phase separation during the coating process. By optimizing the mixing amount of P3HT into the NiPc, a record power conversion efficiency of 23.11%, the highest reported for NiPc-based PSCs is achieved. Moreover, an excellent long-term stability is demonstrated by encapsulating the PSC in polyisobutylene, with the device retaining 90% of its initial efficiency after exposure to 85 °C and 85% relative humidity for 1000 h.
引用文献
推荐文献
微信二维码
  • 微信公众号二维码
  • 关注官方微信公众号
  • 微信二维码
  • 微信扫码联系客服
平台客服