960化工网/ 文献
期刊名称:ACS Applied Bio Materials
期刊ISSN:2576-6422
期刊官方网站:https://pubs.acs.org/journal/aabmcb
出版商:American Chemical Society (ACS)
出版周期:月
影响因子:0
始发年份:2018
年文章数:0
是否OA:否
Drug Delivery on Mg-MOF-74: The Effect of Drug Solubility on Pharmacokinetics
ACS Applied Bio Materials ( IF 0 ) Pub Date : 2023-06-08 , DOI: 10.1021/acsabm.3c00275
Biocompatible metal–organic frameworks (MOFs) have emerged as potential nanocarriers for drug delivery applications owing to their tunable physiochemical properties. Specifically, Mg-MOF-74 with soluble metal centers has been shown to promote rapid pharmacokinetics for some drugs. In this work, we studied how the solubility of drug impacts the pharmacokinetic release rate and delivery efficiency by impregnating various amounts of ibuprofen, 5-fluorouracil, and curcumin onto Mg-MOF-74. The characterization of the drug-loaded samples via X-ray diffraction (XRD), N2 physisorption, and Fourier transform infrared (FTIR) confirmed the successful encapsulation of 30, 50, and 80 wt % of the three drugs within the MOF structure. Assessment of the drug delivery performances of the MOF under its various loadings via HPLC tests revealed that the release rate is a direct function of drug solubility and molecular size. Of the three drugs considered under fixed loading condition, the 5-fluorouracil-loaded MOF samples exhibited the highest release rate constants which was attributed to the highest degree of solubility and smallest molecular size of 5-fluorouracil relative to ibuprofen and curcumin. It was also noted that the release kinetics decreases with drug loading, due to a pharmacokinetic shift in release mechanism from singular to binary modes of compound diffusion. The findings of this study highlight the effects of drug’s physical and chemical properties on the pharmacokinetic rates from MOF nanocarriers.
Graphene Oxide Hosting a pH-Sensitive Prodrug: An In Silico Investigation of Graphene Oxide-Based Nanovehicle toward Cancer Therapy
ACS Applied Bio Materials ( IF 0 ) Pub Date : 2023-06-16 , DOI: 10.1021/acsabm.3c00276
Prodrug and drug delivery systems are two effective strategies for improving the selectivity of chemotherapeutics. Herein, via molecular dynamics (MD) simulation and free energy calculation, the effectiveness of the graphene oxide (GO) decorated with the pH-sensitive prodrug (PD) molecules in cancer therapy is investigated. PEI–CA–DOX (prodrug) was loaded onto the GO surface, in which the hydrogen bonding and pi–pi stacking interactions play the main role in the stability of the GO–PD complex. Due to the strong interaction of GO and PD (about −800 kJ/mol), the GO–PD complex remains stable during the membrane penetration process. The obtained results confirm that GO is a suitable surface for hosting the prodrug and passing it through the membrane. Furthermore, the investigation of the release process shows that the PD can be released under acidic conditions. This phenomenon is due to the reduction of the contribution of electrostatic energy in the GO and PD interaction and the entry of water into the drug delivery system. Moreover, it is found that an external electrical field does not have much effect on drug release. Our results provide a deep understanding of the prodrug delivery systems, which helps the combination of nanocarriers and modified chemotherapy drugs in the future.
Human Adipose-Derived Mesenchymal Stem Cell-Secreted Extracellular Matrix Coating on a Woven Nanotextile Vascular Patch for Improved Endothelial Cell Response
ACS Applied Bio Materials ( IF 0 ) Pub Date : 2023-07-15 , DOI: 10.1021/acsabm.3c00156
Biomedical implants possessing the structural and functional characteristics of extracellular matrix (ECM) are pivotal for vascular applications. This study investigated the potential of recreating a natural ECM-like structural and functional environment on the surface of biodegradable polymeric nanotextiles for vascular implants. Human adipose-derived mesenchymal stem cells (MSCs) were grown on a suitably engineered polycaprolactone (PCL) nanofibrous textile and were allowed to modify its surface through the deposition of MSC-specific ECM. This surface-modified nanotextile showed mechanical characteristics and functionality appropriate for vascular patch material. The uniformity of ECM coating significantly improved the viability, proliferation, and migration of human endothelial cells compared to bare and xenogeneic collagen-coated PCL nanotextile patches. Thus, a polymeric nanotextile, which is surface modified using MSC-driven ECM, provided a rapid and improved endothelialization, thereby suggesting its potential for vascular patch applications.
Near-Infrared Light-Responsive Multifunctional Photothermal/Photodynamic Titanium Diboride Nanocomposites for the Treatment of Antibiotic-Resistant Bacterial Infections
ACS Applied Bio Materials ( IF 0 ) Pub Date : 2023-06-15 , DOI: 10.1021/acsabm.3c00290
Diseases caused by bacterial infection have resulted in serious harm to human health. It is crucial to develop a multifunctional antibiotic-independent antibacterial platform for combating drug-resistant bacteria. Herein, titanium diboride (TiB2) nanosheets integrated with quaternized chitosan (QCS) and indocyanine green (ICG) were successfully prepared as a synergetic photothermal/photodynamic antibacterial nanoplatform (TiB2-QCS-ICG). The TiB2-QCS-ICG nanocomposites exhibit effective photothermal conversion efficiency (24.92%) and excellent singlet oxygen (1O2) production capacity simultaneously under 808 nm near-infrared irradiation. QCS improved TiB2 stability and dispersion, while also enhancing adhesion to bacteria and further accelerating the destruction of bacteria by heat and 1O2. In vitro experiments indicated that TiB2-QCS-ICG had excellent antibacterial properties with an inhibition rate of 99.99% against Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA), respectively. More importantly, in vivo studies revealed that the nanoplatform can effectively inhibit bacterial infection and accelerate wound healing. The effective wound healing rate in the TiB2-QCS-ICG treatment group was 99.6% which was much higher than control groups. Taken together, the as-developed TiB2-QCS-ICG nanocomposite provides more possibilities to develop metal borides for antibacterial infection applications.
Organic Nanoparticles with Aggregation-Induced Emission and Two-Photon Excitation for Fluorescence Imaging of Living Cells/Tissues
ACS Applied Bio Materials ( IF 0 ) Pub Date : 2023-06-20 , DOI: 10.1021/acsabm.3c00298
Aggregation-induced emission (AIE) nanoparticles (NPs) have been applied in bioimaging for cancer diagnosis due to high fluorescence efficiency. However, the poor cell permeability as well as autofluorescence of biological cells/tissues caused by ultraviolet (UV) irradiation is still the key problem of AIE luminophores for biological imaging. Here, we report green-emitting organic AIE luminophores for fluorescence imaging of living cells/tissues, which possess high fluorescence quantum yields and strong AIE under two-photon excitation with near-infrared light beyond 800 nm. These AIE luminophores can bind with bovine serum albumin (BSA) to form biocompatible BSA/AIE-NPs due to their terminal aldehyde groups providing specific anchor sites with the receptor groups in BSA. Furthermore, one/two-photon fluorescence bioimaging for Hela cancer cells has been successfully carried out with BSA/AIE-NPs as the fluorescent probe, and BSA/AIE-NPs show excellent stain properties with a fast permeability of only 5 min, high cellular uptakes, and strong fluorescence. The results demonstrate the great advantages of BSA/AIE-NPs in fast fluorescence biological imaging as well as further cancer diagnosis and therapy.
Label-Free Detection of Cardiac Biomarkers: A Review on Microfluidic Electrochemical Biosensors
ACS Applied Bio Materials ( IF 0 ) Pub Date : 2023-06-20 , DOI: 10.1021/acsabm.3c00257
Biosensors are valuable tools for the detection of biological species, including cells, pathogens, proteins, and other biological molecules. Biosensing devices integrated with microfluidics not only allow for easier sample preparation, portability, and reduced detection time and cost but also offer unique features such as label-free detection and improved sensitivity. Cardiovascular diseases (CVDs), particularly acute myocardial infarction, which is considered one of the main causes of death, are currently diagnosed by electrocardiography (ECG), which has been proven to be inadequate. To overcome the limitations of ECG, the efficient detection of cardiac biomarkers and specifically the measurement of cardiac troponins (cTnT and cTnI) are suggested. This review aims to expound on microfluidics, the most recent materials to develop these devices, and their application in medical diagnosis, particularly in CVD detection. Moreover, we will explore some of the prevalent and last readout methods to investigate in-depth electrochemical label-free detection methods for CVDs, primarily based on voltammetry and electrochemical impedance spectroscopy, with the main focus on structural details.
Interplay between Immune and Bacterial Cells on a Biomimetic Nanostructured Surface: A “Race for the Surface” Study
ACS Applied Bio Materials ( IF 0 ) Pub Date : 2023-06-29 , DOI: 10.1021/acsabm.3c00351
Biomaterial-associated infection is an ever-increasing risk with devasting consequences for patients. Considerable research has been undertaken to address this issue by imparting antibacterial properties to the surface of biomedical implants. One approach that generated much interest over recent years was the generation of bioinspired bactericidal nanostructures. In the present report, we have investigated the interplay between macrophages and bacteria on antibacterial nanostructured surfaces to determine the outcome of the so-called “race for the surface”. Our results showed that macrophages can indeed outcompete Staphylococcus aureus via multiple mechanisms. The early generation of reactive oxygen species by macrophages, downregulation of bacterial virulence gene expression, and the bactericidal nature of the nanostructured surface itself collectively acted to help the macrophage to win the race. This study highlights the potential of nanostructured surfaces to reduce infection rates and improve the long-term success of biomedical implants. This work can also serve as guidance to others to investigate in vitro host–bacteria interactions on other candidate antibacterial surfaces.
Near-Infrared Copper Sulfide Hollow Nanostructures with Enhanced Photothermal and Photocatalytic Performance for Effective Bacterial Sterilization
ACS Applied Bio Materials ( IF 0 ) Pub Date : 2023-06-07 , DOI: 10.1021/acsabm.3c00274
The development of nonantibiotic strategies to combat bacterial infection is highly needed, owing to the widespread infectious disease and bacterial resistance becoming a significant health threat to the world’s population. In recent years, photoactivated antibacterial therapies including photocatalytic and photothermal therapies have attracted increasing attention due to their high efficiency and low side effect. Herein, we introduce a copper sulfide (Cu2–xS) hollow nanostructure-based near-infrared antibacterial platform with synergy photothermal and photocatalytic properties for effective bacterial sterilization. Compared to traditional Cu2–xS nanoparticles, this unique hollow Cu2–xS nanostructure can generate multiple scattered light, which is conducive to light collection. Moreover, its thin shell can shorten the transmission distance of carrier, thus reducing the charge recombination that usually causes the greatest energy loss. As a result, such a Cu2–xS hollow nanostructure enables enhanced photothermal and photocatalytic bacterial killing activities against both Escherichia coli and Staphylococcus aureus, showing promise for antibiotic-free infection treatment and other bacterial sterilization applications.
Protein-Assisted Molybdenum Disulfide as Biomimetic Nanozyme for Antibacterial Application
ACS Applied Bio Materials ( IF 0 ) Pub Date : 2023-06-14 , DOI: 10.1021/acsabm.3c00341
Molybdenum-based nanomaterials with variable oxidation states can be developed as nanozyme catalysts. In this work, we developed a one-pot method for the preparation of molybdenum disulfide assisted by protein. Protamine was used as a cationic template to link molybdate anions and form complexes. During hydrothermal synthesis, protamine can affect the nucleation process of molybdenum disulfide and inhibit their aggregation, which facilitates the fabrication of small-sized molybdenum disulfide nanoparticles. Moreover, the abundant amino/guanidyl groups of protamine could both physically adsorb and chemically bond to molybdenum disulfide and further modulate the crystal structures. The optimized size and crystalline structure enabled a higher exposure of active sites, which enhanced the peroxidase-like activity of molybdenum disulfide/protamine nanocomposites. Meanwhile, the antibacterial activity of protamine was retained in the molybdenum disulfide/protamine nanocomposites, which could synergize with the peroxidase-like activity of molybdenum disulfide to kill bacteria. Therefore, the molybdenum disulfide/protamine nanocomposites are good candidates for antibacterial agents with lower chances of antimicrobial resistance. This study establishes an easy way to design artificial nanozymes by compounding suitable components.
Fast Fabrication of Multifunctional PCL/Curcumin Nanofibrous Membranes for Wound Dressings
ACS Applied Bio Materials ( IF 0 ) Pub Date : 2023-06-02 , DOI: 10.1021/acsabm.3c00177
Therapeutic intervention to skin wounds requires covering the affected area with wound dressings. Interdisciplinary efforts have focused on the development of smart bandages that can perform multiple functions. In this direction, here, we designed a low cost (U$0.012 per cm2) multifunctional therapeutic wound dressing fabricated by loading curcumin (CC) into poly(ϵ-caprolactone) (PCL) nanofibers using solution blow spinning (SBS). The freestanding PCL/CC bandages were characterized by distinct physicochemical approaches and were successful in performing varied functions, including controlled release of CC, colorimetric indication of the wound conditions, barrier against microorganisms, being biocompatible, and providing a photosensitive platform for antimicrobial photodynamic therapy (aPDT). The chemical nature of PCL and CC and the interactions between these components allowed CC to be released for 192 h (ca. 8 days), which could be correlated with the Korsmeyer–Peppas model, with a burst release suitable to treat the inflammatory phase. Due to the CC keto–enol tautomerism, an optical indication of the healing status could be obtained using PCL/CC, which occurred immediately, ranging between red/orange and yellow shades. The effect against pathogenic microorganisms evaluated by agar disc-diffusion, affected skin wound simulation (ex vivo), and microbial penetration tests demonstrated the ability to block and inhibit microbial permeation in different environments. The biocompatibilities of PCL and PCL/CC were verified by in vitro cytotoxicity study, which demonstrated that cell viabilities average above 94 and 96% for human dermal fibroblasts. In addition, the proposed bandage responded to aPDT applied to an in vivo assay, showing that, when irritated, PCL/CC was able to reduce the bacteria present on the real wound of mice. In summary, our findings demonstrate that using PCL and CC to produce nonwovens by the SBS technique offers potential for the rapid fabrication of biocompatible and multifunctional wound dressings, paving the way for large-scale production and utilization of such dressings in the treatment of skin wounds.
Corrosion of Metals During Use in Arthroplasty
ACS Applied Bio Materials ( IF 0 ) Pub Date : 2023-06-01 , DOI: 10.1021/acsabm.2c01082
Arthroplasty implants can undergo corrosion at the modular components, trunnion, and hinges, owing to implant material makeup, micromotion, and interaction with body fluid. In this review, various mechanisms of corrosion in arthroplasty were explored with suggestions on means of improvement. We identified 10 methods including pitting, crevice, mechanically assisted crevice corrosion, fretting, fretting initiated crevice corrosion, mechanically assisted taper corrosion, galvanic corrosion, stress/tension, fatigue corrosion, and inflammatory cell induced corrosion. The position of implants on the galvanic series, and their ability to maintain passivation contribute to their longevity in service. Due to the relative motion of arthroplastic components, bio-tribocorrosion may disrupt passive oxide films, and pitting is initiated at interfaces. Thus, corrosion in arthroplasty as an electrochemical phenomenon mainly starts on one spot and progresses in 3 steps: (1) the oxidative dissolution of metal from implant surfaces into the aqueous active environment, releasing cations, (2) the attraction of electrons to the opposite charge created at another point of the implant surface, producing current flow, and (3) the formation of oxides of metal and metal hydroxides deposited as rust at the surface of the implant. Recent innovations in material manufacturing continue to improve the efficiency of arthroplasty; however, the component parts remain susceptible to bio-tribocorrosion. Thus, a complete eradication of corrosion in arthroplasty would require futuristic materials with improvement in recent materials and designs, derived from knowledge of existing retrieved implants, and strategies to provide overall surface finishes that protect against bio-tribocorrosion.
Biosensors Based on Graphene Oxide Functionalized with Benzothiadiazole-Derived Ligands for the Detection of Cholesterol
ACS Applied Bio Materials ( IF 0 ) Pub Date : 2023-06-23 , DOI: 10.1021/acsabm.2c01054
In this work, imidazole- or imidazolium-based benzothiadiazole ligands functionalized on graphene oxide combined with cholesterol oxidase constitute efficient, robust, and easy-to-handle materials with high biosensing activity for the detection of cholesterol by colorimetric methods. The presence of lanthanum(III) supported on graphene oxide as a possible coordinating site for the benzothiadiazole ligands was also evaluated, and its bioactivity was compared to that of the analogous material without the rare-earth metal. Our results demonstrated that graphene oxide functionalized with 4,7-bis-(imidazol-1-yl)-2,1,3-benzothiadiazole exhibited the best performance for the quantification of total cholesterol with a sensitivity of 0.0649 (with lanthanum) and 0.0618 au dL mg–1 (without lanthanum). In addition, these materials presented a better percentage of immobilization (>90%), recovered activity, resistance to storage, and detection range than materials containing 4,7-[1-carboxymethyl-(imidazol-3-ium)]-2,1,3-benzothiadiazole chloride. Therefore, the combination of GO-BTD (Im/Ac)/ChOx (with or without lanthanum) affords efficient biosensors for the colorimetric detection of cholesterol.
Reusable and Biodegradable Separation Membranes Prepared from Common Mushrooms for the Removal of Oily and Particulate Contaminants from Water
ACS Applied Bio Materials ( IF 0 ) Pub Date : 2023-06-07 , DOI: 10.1021/acsabm.3c00189
Mushroom chitin membranes with controllable pore structures were fabricated through a simple process with naturally abundant Agaricus bisporus mushrooms. A freeze-thaw method was applied to alter the pore structures of the membranes, which consist of chitin fibril clusters within the glucan matrix. With tunable pore size and distribution, mushroom chitin membranes could effectively separate stable oil/water emulsions (dodecane, toluene, isooctane, and chili oil) with various chemical properties and concentrations and particle contaminants (carbon black and microfibers) from water. Chitin fibrils tightly pack with each other to form a dense membrane, leading to no permeation of contaminants or water. An increasing number of applied freeze-thaw cycles confers more tortuous pore structures throughout the mushroom chitin membranes, leading to higher flux while maintaining rejection performance. The 3D simulation constructed by the X-ray computed tomography and GeoDict software also demonstrated capturing a considerable amount of contaminants within the membranes’ pores, which can be easily removed by water rinsing for further successive filtration. Furthermore, mushroom chitin membranes were almost completely biodegraded after approximately a month of being buried in the soil or kept in a lysozyme solution while possessing mechanical durability demonstrated by consistent filtration performance for repeated usage up to 15 cycles under ambient and external pressure. This research is a proof of concept that mushroom-derived chitin develops functional and biodegradable materials for environmental applications with scalability.
Fusion Landscape of Mycobacterial Envelope-Derived Lipid Vesicles with Intact Bacteria Dictates High Intracellular Drug Retention
ACS Applied Bio Materials ( IF 0 ) Pub Date : 2023-07-26 , DOI: 10.1021/acsabm.3c00286
Membrane vesicles are critical regulators of pathogenic diseases. In tubercular infections, the use of mycobacteria derived vesicles as delivery vehicles to overcome drug resistance and complex treatment regimens has never been attempted. Here, we first address how these vesicles interact with their target cells, especially via membrane fusion. Membrane fusion between alike mycobacterial outer and inner membrane layer-derived lipid vesicles is shown to be driven by the structural, geometrical, and biophysical attributes of constituent lipids. The increased fusion of outer-membrane-derived vesicles with intact bacteria ensures enhanced intracellular drug levels and is presented as a “natural” antitubercular drug delivery vehicle.
Thixotropic β-Chitin Nanofiber Hydrogel with a Living Body-Responsive Self-Hardening Property and Its Application as a Sprayable Antiadhesion Barrier
ACS Applied Bio Materials ( IF 0 ) Pub Date : 2023-07-06 , DOI: 10.1021/acsabm.3c00221
Considering recent advances in surgical techniques, sprayable antiadhesion barriers that are compatible with minimally invasive procedures are needed. However, the relatively low mechanical stiffness of the current thixotropic reversible sol-to-gel transition hydrogels has hindered their medical application. Herein, we show a thixotropic sprayable β-chitin nanofiber hydrogel that spontaneously lost the thixotropic property in response to the environments within the living body. Furthermore, interactions between hydrogels and the biological environment result in a significant increase in mechanical stiffness. Due to these advantageous properties, β-chitin nanofiber hydrogels administered by spray prevent postoperative abdominal adhesions and are thus promising sprayable antiadhesion barriers.
Tuning Electrostatic Interactions To Control Orientation of GFP Protein Adsorption on Silica Surface.
ACS Applied Bio Materials ( IF 0 ) Pub Date : 2023-06-22 , DOI: 10.1021/acsabm.3c00125
The adsorption of green fluorescent protein (GFP) on silica surfaces has been the subject of growing interest due to its potential applications in various fields, including biotechnology and biomedicine. In this study, we used all-atom molecular dynamics simulations to investigate the charge-driven adsorption of wild type GFP and its supercharged variants on silica surfaces. The results showed that the positively charged variant of GFP adsorbed on the negatively charged silica surface with minimal loss in its secondary structure. Further studies were conducted to understand the role of surface charge distribution on two other positively charged variants of GFP, and the results showed that the orientation of GFP on silica can be easily tuned by careful mutations of the charged amino acid residues on the GFP. This study provides valuable molecular insights into the role of electrostatic-driven adsorption of GFP and highlights the importance of charge interactions in the adsorption process.
Electrostatic Acoustic Sensor with an Impedance-Matched Diaphragm Characterized for Body Sound Monitoring
ACS Applied Bio Materials ( IF 0 ) Pub Date : 2023-07-20 , DOI: 10.1021/acsabm.3c00359
Acoustic sensors are able to capture more incident energy if their acoustic impedance closely matches the acoustic impedance of the medium being probed, such as skin or wood. Controlling the acoustic impedance of polymers can be achieved by selecting materials with appropriate densities and stiffnesses as well as adding ceramic nanoparticles. This study follows a statistical methodology to examine the impact of polymer type and nanoparticle addition on the fabrication of acoustic sensors with desired acoustic impedances in the range of 1–2.2 MRayls. The proposed method using a design of experiments approach measures sensors with diaphragms of varying impedances when excited with acoustic vibrations traveling through wood, gelatin, and plastic. The sensor diaphragm is subsequently optimized for body sound monitoring, and the sensor’s improved body sound coherence and airborne noise rejection are evaluated on an acoustic phantom in simulated noise environments and compared to electronic stethoscopes with onboard noise cancellation. The impedance-matched sensor demonstrates high sensitivity to body sounds, low sensitivity to airborne sound, a frequency response comparable to two state-of-the-art electronic stethoscopes, and the ability to capture lung and heart sounds from a real subject. Due to its small size, use of flexible materials, and rejection of airborne noise, the sensor provides an improved solution for wearable body sound monitoring, as well as sensing from other mediums with acoustic impedances in the range of 1–2.2 MRayls, such as water and wood.
Reprogramming M1-to-M2 Phenotype to Alleviate Inflammation: Using Liposomal Curcumin as a Tool to Redefine Macrophage Functionality
ACS Applied Bio Materials ( IF 0 ) Pub Date : 2023-06-28 , DOI: 10.1021/acsabm.3c00316
The versatile nature of macrophages and their ability to switch between various activation states plays a pivotal role in both promoting and inhibiting inflammatory processes. In pathological inflammatory conditions, classically activated M1 macrophages are often associated with initiating and maintaining inflammation, while alternatively activated M2 macrophages are linked to the resolution of chronic inflammation. Achieving a favorable equilibrium between M1 and M2 macrophages is crucial for mitigating inflammatory environments in pathological conditions. Polyphenols are known to have strong inherent antioxidative capabilities, and curcumin has been found to reduce macrophage inflammatory reactions. However, its therapeutic efficacy is compromised due to its poor bioavailability. The present study aims to harness the properties of curcumin by loading it in nanoliposomes and enhancing the M1-to-M2 macrophage polarization. A stable liposome formulation was achieved at 122.1 ± 0.08 nm, and a sustained kinetic release of curcumin was observed within 24 h. The nanoliposomes were further characterized using TEM, FTIR, and XRD, and the morphological changes in macrophage cells, RAW264.7, were observed in SEM, indicating a distinct M2-type phenotype after the treatment with liposomal curcumin. ROS may partially control macrophage polarization and be observed to decrease after treatment with liposomal curcumin. The nanoliposomes were able to successfully internalize in the macrophage cells, and an enhanced expression of ARG-1 and CD206 with a decrease in iNOS, CD80, and CD86 levels suggested the polarization of LPS-activated macrophages toward the M2 phenotype. Also, liposomal curcumin treatment dose-dependently inhibited TNF-α, IL-2, IFN-γ, and IL-17A at secretory levels and simultaneously increased the levels of cytokines like IL-4, IL-6, and IL-10.
Soft Perfusable Device to Culture Skeletal Muscle 3D Constructs in Air
ACS Applied Bio Materials ( IF 0 ) Pub Date : 2023-06-21 , DOI: 10.1021/acsabm.3c00215
Devices for in vitro culture of three-dimensional (3D) skeletal muscle tissues have multiple applications, including tissue engineering and muscle-powered biorobotics. In both cases, it is crucial to recreate a biomimetic environment by using tailored scaffolds at multiple length scales and to administer prodifferentiative biophysical stimuli (e.g., mechanical loading). On the contrary, there is an increasing need to develop flexible biohybrid robotic devices capable of maintaining their functionality beyond laboratory settings. In this study, we describe a stretchable and perfusable device to sustain cell culture and maintenance in a 3D scaffold. The device mimics the structure of a muscle connected to two tendons: Tendon–Muscle–Tendon (TMT). The TMT device is composed of a soft (E ∼ 6 kPa) porous (pore diameter: ∼650 μm) polyurethane scaffold, encased within a compliant silicone membrane to prevent medium evaporation. Two tendon-like hollow channels interface the scaffold with a fluidic circuit and a stretching device. We report an optimized protocol to sustain C2C12 adhesion by coating the scaffold with polydopamine and fibronectin. Then, we show the procedure for the soft scaffold inclusion in the TMT device, demonstrating the device’s ability to bear multiple cycles of elongations, simulating a protocol for cell mechanical stimulation. By using computational fluid dynamic simulations, we show that a flow rate of 0.62 mL/min ensures a wall shear stress value safe for cells (<2 Pa) and 50% of scaffold coverage by an optimal fluid velocity. Finally, we demonstrate the effectiveness of the TMT device to sustain cell viability under perfusion for 24 h outside of the CO2 incubator. We believe that the proposed TMT device can be considered an interesting platform to combine several biophysical stimuli, aimed at boosting skeletal muscle tissue differentiation in vitro, opening chances for the development of muscle-powered biohybrid soft robots with long-term operability in real-world environments.
Tissue-Adhesive Hydrogel Spray System for Live Cell Immobilization on Biological Surfaces
ACS Applied Bio Materials ( IF 0 ) Pub Date : 2023-07-19 , DOI: 10.1021/acsabm.3c00378
Gelatin hydrogels are used as three-dimensional cell scaffolds and can be prepared using various methods. One widely accepted approach involves crosslinking gelatin amino groups with poly(ethylene glycol) (PEG) modified with N-hydroxysuccinimide ester (PEG-NHS). This method enables the encapsulation of live cells within the hydrogels and also facilitates the adhesion of the hydrogel to biological tissues by crosslinking their surface amino groups. Consequently, these hydrogels are valuable tools for immobilizing cells that secrete beneficial substances in vivo. However, the application of gelatin hydrogels is limited due to the requirement for several minutes to solidify under conditions of neutral pH and polymer concentrations suitable for live cells. This limitation makes it impractical for use with biological tissues, which have complex shapes or inclined surfaces, restricting its application to semi-closed spaces. In this study, we propose a tissue-adhesive hydrogel that can be sprayed and immobilized with live cells on biological tissue surfaces. This hydrogel system combines two components: (1) gelatin/PEG-NHS hydrogels and (2) instantaneously solidifying PEG hydrogels. The sprayed hydrogel solidified within 5 s after dispensing while maintaining the adhesive properties of the PEG-NHS component. The resulting hydrogels exhibited protein permeability, and the viability of encapsulated human mesenchymal stem/stromal cells (hMSCs) remained above 90% for at least 7 days. This developed hydrogel system represents a promising approach for immobilizing live cells on tissue surfaces with complex shapes.
1 2 4 下页
中科院SCI期刊分区
大类学科 小类学科 TOP 综述
补充信息
自引率 H-index SCI收录状况 PubMed Central (PML)
0
投稿指南
期刊投稿网址
https://acsparagonplus.acs.org/psweb/loginForm?code=1000
收稿范围
ACS Applied Bio Materials是一本跨学科期刊,发表原创研究,涵盖生物材料和生物界面的各个方面,包括并超越传统的生物传感,生物医学和治疗应用。该期刊致力于报道应用性质的新的和原创的实验和理论研究,将材料,工程,物理,生物科学和化学领域的知识整合到重要的生物应用中。该期刊特别关注解决结构与功能之间关系的工作,并评估材料在相关环境和生物条件下的稳定性和降解。期刊收录研究方向:用于生物应用的无机,杂化和有机材料,包括抗菌/抗菌和抗癌材料、生物污染和防污材料,生物分子成像/传感材料,仿生材料,自愈合材料,生物组装材料,可持续生物材料,以及合成用于药物输送/靶向,光动力/光热疗法的新材料和现有材料的新合成方法。描述材料和设备的设计和开发,以便在生物能源,生物催化,生物气溶胶,生物电子学,环境和水安全等领域更快地推进新的生物应用。
收录载体
Letters Articles Reviews Invited Spotlights on Applications Forum Articles Comments
微信二维码
  • 微信公众号二维码
  • 关注官方微信公众号
  • 微信二维码
  • 微信扫码联系客服
平台客服