960化工网/ 文献
期刊名称:ACS Applied Materials & Interfaces
期刊ISSN:1944-8244
期刊官方网站:http://pubs.acs.org/journal/aamick
出版商:American Chemical Society (ACS)
出版周期:Monthly
影响因子:10.383
始发年份:2009
年文章数:4890
是否OA:否
Integration of Ag Plasmonic Metal and WO3/InGaN Heterostructure for Photoelectrochemical Water Splitting
ACS Applied Materials & Interfaces ( IF 10.383 ) Pub Date : 2023-07-15 , DOI: 10.1021/acsami.3c05141
In this study, a Ag/WO3/InGaN hybrid heterostructure was successfully developed by sputtering and molecular beam epitaxy techniques, to obtain unique Ag nanospheres adorned with cauliflower-like WO3 nanostructure over the InGaN nanorods (NRs). Exploiting the localized surface plasmon resonance of Ag, the Ag/WO3/InGaN heterostructure exhibited superior photoabsorption ability in the visible region (400–700 nm) of the solar spectrum, with a surface plasmon resonance band centered around 440 nm. Comprehensive analysis through photoluminescence spectroscopy, photocurrent measurements, and electrochemical impedance spectroscopy revealed that the Ag/WO3/InGaN hybrid heterostructure significantly enhances the charge carrier separation and transfer kinetics leading to improved overall photoelectrochemical (PEC) performance. The photocurrent density of the Ag/WO3/InGaN photoanode is 1.17 mA/cm2, which is about 2.72 times higher than that of pure InGaN NRs under visible light irradiation. The photoanode exhibited excellent stability for about 12 h. From the study, it has been found that the maximum applied bias photon-to-current efficiency (ABPE) is ∼1.67% at the applied bias of 0.6 V. The improved PEC water splitting efficiency of the Ag/WO3/InGaN photoanode is attributed to the synergistic effects of localized surface plasmon resonance (LSPR), efficient charge carrier separation and transport, and the presence of a Schottky junction. Consequently, the plasmonic metal-assisted heterojunction-based semiconductor Ag/WO3/InGaN demonstrates immense potential for practical applications in photoelectrochemical water splitting.
Perylenediimides with Enhanced Autophagy Inhibition for a Dual-Light Activatable Photothermal Gas Therapy
ACS Applied Materials & Interfaces ( IF 10.383 ) Pub Date : 2023-07-14 , DOI: 10.1021/acsami.3c04404
Photothermal therapy (PTT) has emerged as a promising strategy for the treatment of tumors. However, the intrinsic self-repair mechanism of cells and the nonspecific photothermal effect of photothermal agents can result in poor treatment outcomes and normal tissue injury. To address this issue, we developed a dual light activatable perylenediimide derivative (P-NO) for nitric oxide-enhanced PTT. P-NO can self-assemble into nanoparticles in aqueous solutions. The P-NO nanoparticles are capable of releasing both NO and a photothermal molecule (P-NH) upon green light irradiation. The simultaneous release of NO and P-NH activates the photothermal effect and inhibits cell protection autophagy, thereby improving the therapeutic efficacy of PTT under near-infrared (NIR) light. Moreover, the switch on of NIR fluorescence allows real-time monitoring of the release of P-NH. Remarkably, in a mouse subcutaneous tumor model, significant tumor ablation can be achieved following dual light activated photothermal gas therapy. This work offers a promising and straightforward approach to constructing activatable perylenediimide-based photothermal agents for enhancing the effectiveness of photothermal gas therapy.
Removing Perfluoro Pollutants PFOA and PFOS by Two-Pronged Design of a Ni8-Pyrazolate Porous Framework
ACS Applied Materials & Interfaces ( IF 10.383 ) Pub Date : 2023-07-13 , DOI: 10.1021/acsami.3c07568
Inspired by the practical need to remove persistent perfluoro pollutants from the environment, we leverage cutting-edge crystal engineering approaches. For this, we set our eyes on a recent porous coordination framework system based on the Ni8-oxo cluster and pyrazolate linkers as it is known for its stability to bases and other harsh environmental conditions. Our designer linker molecule here features (1) pyrazole donors masked by t-butyloxycarbonyl and (2) ethynyl side units protected by triisopropylsilyl groups. The former solvothermally demasks to assemble the Ni8-pyrazolate framework, in which the triisopropylsilyl groups can be post-synthetically cleaved by guest fluoride ions to unveil the terminal alkyne group (−CCH). The ethynyl groups of the framework solid offer versatile reactions for functionalization, as with perfluorophenyl azide (via a click reaction) to afford the two prongs of the 1,2,3-triazole base unit and the perfluoro unit. Together, these two functions make for an effective adsorbent for the topical acid pollutants of perfluorooctanoic acid and perfluorooctanesulfonic acid, with a high apparent rate constant (kobs) of 0.99 g mg–1 h–1 and large maximum uptake capacity (qmax) of 268.5 mg g–1 for perfluorooctanoic acid and kobs of 0.77 g mg–1 h–1 and qmax of 142.1 mg g–1 for perfluorooctanesulfonic acid.
Halide Tunablility Leads to Enhanced Biomechanical Energy Harvesting in Lead-Free Cs2SnX6-PVDF Composites
ACS Applied Materials & Interfaces ( IF 10.383 ) Pub Date : 2023-07-13 , DOI: 10.1021/acsami.3c04031
The main challenges impeding the widespread use of organic–inorganic lead halide perovskites in modern-day technological devices are their long-term instability and lead contamination. Among other environmentally convivial and sustainable alternatives, Cs2SnX6 (X = Cl, Br, and I) compounds have shown promise as ambient-stable, lead-free materials for energy harvesting, and optoelectronic applications. Additionally, they have demonstrated tremendous potential for the fabrication of self-powered nanogenerators in conjunction with piezoelectric polymers like polyvinylidene-fluoride (PVDF). We report on the fabrication of composites constituting solvothermally synthesized Cs2SnX6 nanostructures and PVDF. The electroactive phases in PVDF were boosted by the incorporation of Cs2SnX6, leading to enhanced piezoelectricity in the composites. First-principles density functional theory (DFT) studies were carried out to understand the interfacial interaction between the Cs2SnX6 and PVDF, which unravels the mechanism of physisorption between the perovskite and PVDF, leading to enhanced piezoresponse. The halide ions in the inorganic Cs2SnX6 perovskites were varied systematically, and the piezoelectric behaviors of the respective piezoelectric nanogenerators (PENGs) were investigated. Further, the dielectric properties of these halide perovskite-based hybrids are quantified, and their piezoresponse amplitude, piezoelectric output signals, and charging capacity are also evaluated. Out of the several films fabricated, the optimized Cs2SnI6_PVDF film shows a piezoelectric coefficient (d33) value of ∼200 pm V–1 and a remanent polarization of ∼0.74 μC cm–2 estimated from piezoresponse force microscopy and polarization hysteresis loop measurement, respectively. The optimized Cs2SnI6_PVDF-based device produced an instantaneous output voltage of ∼167 V, a current of ∼5.0 μA, and a power of ∼835 μW across a 5 MΩ resistor when subjected to periodic vertical compression. The output voltage of this device is used to charge a capacitor with a 10 μF capacitance up to 2.2 V, which is then used to power some commercial LEDs. In addition to being used as a pressure sensor, the device is employed to monitor human physiological activities. The device demonstrates excellent operational durability over a span of several months in an ambient environment vouching for its exceptional potential in application to mechanical energy harvesting and pressure sensing applications.
Flexible Basalt Fiber/Aramid Nanofiber/Carbon Nanotube Electromagnetic Shielding Paper with Outstanding Environmental Stability and Joule Heating Performance
ACS Applied Materials & Interfaces ( IF 10.383 ) Pub Date : 2023-07-13 , DOI: 10.1021/acsami.3c06138
In the field of electromagnetic shielding, it has become an important trend to manufacture thinner and better-performing electromagnetic interference (EMI) shielding materials. However, EMI shielding materials that are recyclable and resistant to extreme environments are of great significance for sustainable development and expanding their application areas. In this study, a composite paper with a “rebar-concrete” layered structure through the vacuum-assisted filtration approach by utilizing basalt fibers (BF) and aramid nanofibers (ANFs) with excellent temperature resistance and multiwalled carbon nanotubes with high electrical conductivity was prepared. The composite paper not only delivers a high electrical conductivity of 15.9 S cm–1 and a high electromagnetic interference shielding efficiency (EMI SE) of 24.6 dB but also exhibits a high specific shielding efficiency (SSE/t) of 12,504 dB cm2 g–1 at a thickness of 48 μm. Thanks to the excellent thermal stability of basalt fibers and aramid nanofibers, the composite paper exhibits long-term stable EMI shielding performance and structural integrity in various extreme environments, including fire, high/low temperature (−196 to 300 °C), and acid–base corrosion. Furthermore, the BF/ANF/CNT composite paper also shows excellent Joule heating performance, rapid electrothermal response, and good temperature controllability. Based on these excellent properties, the BF/ANF/CNT composite paper shows tremendous potential for practical applications to meet the requirements of various extreme environments.
Systematic Study of Aluminum Corrosion in Ionic Liquid Electrolytes for Sodium-Ion Batteries: Impact of Temperature and Concentration
ACS Applied Materials & Interfaces ( IF 10.383 ) Pub Date : 2023-07-13 , DOI: 10.1021/acsami.3c06812
The development of sodium-ion batteries utilizing sulfonylamide-based electrolytes is significantly encumbered by the corrosion of the Al current collector, resulting in capacity loss and poor cycling stability. While ionic liquid electrolytes have been reported to suppress Al corrosion, a recent study found that pitting corrosion occurs even when ionic liquids are employed. This study investigates the effects of temperature and Na salt concentration on the Al corrosion behavior in different sulfonylamide-based ionic liquid electrolytes for sodium-ion batteries. In the present work, cyclic voltammetry measurements and scanning electron microscopy showed that severe Al corrosion occurred in ionic liquids at high temperatures and low salt concentrations. X-ray photoelectron spectroscopy was employed to identify the different elemental components and verify the thickness of the passivation layer formed under varied salt concentrations and temperatures. The differences in the corrosion behaviors observed under the various conditions are ascribed to the ratio of free [FSA]− to Na+-coordinating [FSA]− in the electrolyte and the stability of the newly formed passivation layer. This work aims at augmenting the understanding of Al corrosion behavior in ionic liquid electrolytes to develop advanced batteries.
Ultrasparse View X-ray Computed Tomography for 4D Imaging
ACS Applied Materials & Interfaces ( IF 10.383 ) Pub Date : 2023-07-12 , DOI: 10.1021/acsami.3c06291
X-ray computed tomography (CT) is a noninvasive, nondestructive approach to imaging materials, material systems, and engineered components in two and three dimensions. Acquisition of three-dimensional (3D) images requires the collection of hundreds or thousands of through-thickness X-ray radiographic images from different angles. Such 3D data acquisition strategies commonly involve suboptimal temporal sampling for in situ and operando studies (4D imaging). Herein, we introduce a sparse-view imaging approach, Tomo-NeRF, which is capable of reconstructing high-fidelity 3D images from <10 two-dimensional radiographic images. Experimental 2D and 3D X-ray images were used to test the reconstruction capability in two-view, four-view, and six-view scenarios. Tomo-NeRF is capable of reconstructing 3D images with a structural similarity of 0.9971–0.9975 and a voxel-wise accuracy of 81.83–89.59% from 2D experimentally obtained images. The reconstruction accuracy for the experimentally obtained images is less than the synthetic structures. Experimentally obtained images demonstrate a similarity of 0.9973–0.9984 and a voxel-wise accuracy of 84.31–95.77%.
Rationally Designed Solution-Processible Conductive Carbon Additive Coating for Sulfide-based All-Solid-State Batteries
ACS Applied Materials & Interfaces ( IF 10.383 ) Pub Date : 2023-07-17 , DOI: 10.1021/acsami.3c05713
Sulfide-based all-solid-state batteries (ASSBs) have emerged as promising candidates for next-generation energy storage systems owing to their superior safety and energy density. A conductive agent is necessarily added in the cathode composite of ASSBs to facilitate electron transport therein, but it causes the decomposition of the solid electrolyte and ultimately the shortening of lifetime. To resolve this dilemmatic situation, herein, we report a rationally designed solution-processible coating of zinc oxide (ZnO) onto vapor-grown carbon fiber as a conductive agent to reduce the contact between the carbon additive and the solid electrolyte and still maintain electron pathways to the active material. ASSBs with the carbon additive with an optimal coating of ZnO have markedly improved cycling performance and rate capability compared to those with the bare conductive agent, which can be attributed to hindering the decomposition of the solid electrolytes. The results highlight the usefulness of controlling the interparticle contacts in the composite cathodes in addressing the challenging interfacial degradation of sulfide-based ASSBs and improving their key electrochemical properties.
Machine-Learning-Enabled Framework in Engineering Plastics Discovery: A Case Study of Designing Polyimides with Desired Glass-Transition Temperature
ACS Applied Materials & Interfaces ( IF 10.383 ) Pub Date : 2023-07-25 , DOI: 10.1021/acsami.3c05376
Great and continuous efforts have been made to discover high-performance engineering plastics with specific properties to replace traditional engineering materials in many fields. The utilization of machine learning (ML) has brought more opportunities for the discovery of high-performing engineering plastics. However, hindered by either the relatively small database or a lack of accurate structure descriptors with clear physical and chemical meanings relating to polymer properties, the current ML studies show some flaws in the accuracy and efficiency in polymer development. Herein, we collected a dataset of 878 polyimides (PI), one of the best engineering plastics, with experimentally measured glass-transition temperature (Tg) values, and developed a rapid and accurate ML approach to design PI candidates with the desired Tg value. After the conversion from PI structures into “mechanically identifiable” SMILES (Simplified molecular input line entry system) language, the eight most critical descriptors were ultimately obtained by multiple analysis methods. The physiochemical meaning of the key descriptors was further analyzed carefully to translate the implicit “machine language” to chemical knowledge. The artificial neural network (ANN)-based model gave the most accurate results with a root-mean-square error of ∼11 K among the studied ML methods. More importantly, three potential PI candidates with desired Tg (DPIs) were designed according to the chemical insight of the key descriptors, which were then verified by experiments. The experimental and predicted Tg values of DPIs have an acceptable average deviation of ca. 3.66%. This accuracy has reached the level of the traditional molecular simulation, but the time consumption and hold-up computing resource are tremendously reduced. Furthermore, the current ML approach could offer a scalable and adaptable framework in future engineer plastics innovation.
Metal–Organic Framework Based Triboelectric Nanogenerator for a Self-Powered Methanol Sensor with High Sensitivity and Selectivity
ACS Applied Materials & Interfaces ( IF 10.383 ) Pub Date : 2023-07-27 , DOI: 10.1021/acsami.3c07966
Triboelectric nanogenerators have shown great potential in the area of self-powered gas sensors in the past decade. In this paper, we developed a triboelectric nanogenerator (TENG) based on spiky structured ZIF-8@ZnO, which can harvest energy with high efficiency and act as a self-powered methanol sensor. The open-circuit voltage and short-circuit current generated by a ZIF-8@ZnO-based TENG is 58 V and 10 μA, achieving 2.4 times and 3.3 times enhancement compared to ZnO-based TENGs. The TENG can charge capacitors fast and light up at least 40 LEDs. ZIF-8@ZnO-based TENGs show good sensitivity and selectivity to methanol gas at room temperature due to the porous structure provided by ZIF-8 and the heterostructure of ZIF-8@ZnO. The response of ZIF-8@ZnO-based TENG to methanol reaches 30.35% at 100 ppm with excellent response (∼5.9 s) and recovery time (∼2.2 s). This work demonstrates the application of MOF-modified metal oxide semiconductors based on a self-powered gas sensor and proposes a promising solution to enhance the output performance and sensing properties of TENGs based on metal oxide semiconductors.
Self-Assembled Complex Three-Phase Core–Shell Nanostructure of Au–CoFe2–TiN with a Magneto-Optical Coupling Effect
ACS Applied Materials & Interfaces ( IF 10.383 ) Pub Date : 2023-07-26 , DOI: 10.1021/acsami.3c06777
Nanostructured plasmonic–magnetic metamaterials have gained great research interest due to their enhanced magneto-optical coupling effects. Here, we report a complex three-phase nanocomposite design combining ferromagnetic CoFe2 with plasmonic TiN and Au as a multifunctional hybrid metamaterial using either a cogrowth or a templated method. Via the first method of cogrowing three phases, three different morphologies of Au–CoFe2 core–shell nanopillars were formed in the TiN matrix. Via the second method of sequential deposition of a TiN–Au seed layer and a TiN–CoFe2 layer, highly ordered and uniform single-type core–shell nanopillars (i.e., the CoFe2 shell with a Au core) form in the TiN matrix. Both cogrowth and templated growth TiN–CoFe2–Au hybrid systems exhibit excellent epitaxial quality, hyperbolic dispersion, magnetic anisotropy, and a magneto-optical coupling effect. This study provides an effective approach for achieving highly uniform multiphase vertically aligned nanocomposite structures with well-integrated optical, magnetic, and coupling properties.
Defined Surface Physicochemical Cues Inhibit M1 Polarization of Human Macrophages Using Colloidal Self-Assembled Patterns
ACS Applied Materials & Interfaces ( IF 10.383 ) Pub Date : 2023-07-25 , DOI: 10.1021/acsami.3c04692
Biophysical and biochemical cues modulate mammalian cell behavior and phenotype simultaneously. Macrophages, indispensable cells in the innate immune system, respond to external threats such as bacterial infections and implanted devices, undergoing the classical M1 polarization to become a pro-inflammatory phenotype. In the study, lipopolysaccharide (LPS)-induced M1 polarization was examined using RAW264.7, THP-1, and primary human PBMCs on a family of artificial extracellular matrix (ECM), named colloidal self-assembled patterns (cSAPs). The results showed that cSAPs were biocompatible, which cannot induce M1 or M2 polarization. Interestingly, specific cSAPs (e.g., cSAP3) suppress the level of M1 polarization (i.e., reduced nitric oxide production, down-regulated gene expression of iNOS, IL-6, TNF-α, IL-1β, and TLR4, and reduced proportion of CD11b+CD86+ cells). Transcriptome analysis showed that cell adhesion and cell-ECM interaction participated in the M1 polarization, and the mechano-sensitive genes such as PIEZO1 were down-regulated on the cSAP3. More interestingly, these genes were also down-regulated under LPS stimulation, indicating that cells became insensitive to the LPS. The abovementioned results indicate that the defined physicochemical cues can govern macrophage polarization. This study illustrates a potential surface design at biointerface, which is critical in tissue engineering and materiobiology. The outcome is also inspiring in ECM-mediated immune responses.
Application of Graphene-Combined Rare-Earth Oxide (Sm2O3) in Solar-Blind Ultraviolet Photodetection
ACS Applied Materials & Interfaces ( IF 10.383 ) Pub Date : 2023-07-25 , DOI: 10.1021/acsami.3c06695
Rare-earth oxide Sm2O3 is theoretically expected to be used in the preparation of ultraviolet (UV) detectors with low dark currents and high radiation resistance due to its characteristics of a wide bandgap, a high dielectric constant, and high chemical stability. However, certain features that rare-earth oxides possess, such as high resistivity and weak photoelectric response currents, have hindered relevant research on these kinds of materials in the field of UV detection. In this work, a p-Gr/i-Sm2O3/n-SiC heterojunction photovoltaic solar-blind UV sensor was constructed for the first time. Because of the high mobility of graphene (Gr) and the contribution of double built-in electric fields in the heterojunction, the collection efficiency of photogenerated carriers has been greatly improved, with the typical shortcomings of high resistivity and poor photoelectric response performance of rare-earth oxides having been overcome. This detector has exhibited outstanding performance at 0 V, including a responsivity of 19.8 mA/W and an open-circuit voltage of 0.68 V. Additionally, this detector has a detectivity as high as 1.2 × 1011 jones, which is at the front position of most ultraviolet detectors. The fabrication of this high-performance Sm2O3-based photovoltaic UV detector has broadened the application fields of rare-earth oxide semiconductors. Therefore, this project has important value for future research in relevant fields.
Coupling Carbon-Based Composite Phase Change Materials with a Polyurethane Sponge for Sustained and Efficient Solar-Driven Cleanup of Viscous Crude Oil Spill
ACS Applied Materials & Interfaces ( IF 10.383 ) Pub Date : 2023-07-27 , DOI: 10.1021/acsami.3c07360
The efficient cleanup of crude oil spills is a worldwide problem due to their high viscosity and low fluidity. Under the assistance of solar radiation, adsorbents with in situ heating function are becoming the ideal candidates to solve this problem. In this study, a new strategy coupling a polyurethane (PU) sponge with phase change materials (PCMs) is proposed to realize the efficient utilization of solar energy and crude oil cleanup. Wormlike carbon nanotubes/mesoporous carbon (CNTs/MC) with a core–shell structure was used to encapsulate polyethylene glycol (PEG), which was then introduced into the PU sponge for photothermal conversion and thermal storage. After coating with a polydimethylsiloxane (PDMS) layer, the sponge was further endowed with hydrophobic characteristics. Additionally, PDMS can function as a binder between PEG@CNTs/MC and sponge skeleton. The resulting PEG@CNTs/MC/PU/PDMS (named as PEG@CMPP) exhibited excellent photothermal conversion and high absorption capacity for high-viscosity crude oil. Most importantly, thanks to the heat storage properties of PEG, the stored heat can be sustainably transferred to the surrounding crude oil to promote its continuous absorption even under insufficient light intensity conditions. The crude oil absorption capacity of PEG@CMPP-3 reached approximately 0.96 g/cm3 even after the light source was removed, which manifested the distinctive advantages compared to the conventional photothermal adsorbent. The proposed approach integrates the high efficiency of solar-assisted heating and energy-conserving advantage, thereby providing a feasible strategy for highly efficient remediation of viscous crude oil spills.
Highly Porous Polypyrrole (PPy) Hydrogel Support for the Design of a Co–N–C Electrocatalyst for Oxygen Reduction Reaction
ACS Applied Materials & Interfaces ( IF 10.383 ) Pub Date : 2023-07-27 , DOI: 10.1021/acsami.3c08022
Atomically dispersed metal–nitrogen–carbon (M–N–C) catalysts have emerged as one of the most promising platinum-group metal (PGM)-free cathode catalysts for oxygen reduction reaction (ORR). Among the various approaches to enhance the ORR performance of the catalysts, increasing the density of accessible active sites is of paramount importance. Thus, nitrogen-rich support with abundant porosity can be very propitious. Herein, we report a highly porous polypyrrole (PPy) hydrogel as a versatile support for the facile design of a Co–N–C electrocatalyst for ORR. The resulting Co–N–C catalyst with abundant micro- and mesoporous combinations demonstrates a half-wave potential (E1/2) of 0.825 V vs reversible hydrogen electrode (RHE) in O2-saturated 0.1M KOH with just 2.1 wt % Co content. The ORR performance reduces only 11 mV (E1/2) after 5000 cycles of accelerated durability test (ADT), portraying its excellent stability. The catalyst retains ≈83% of its original current during a short-term durability test at 0.8 V vs RHE for 25 h. Furthermore, the catalyst shows electron transfer approaching ≈4 with low H2O2 yield in the potential range 0.5–0.9 V vs RHE. This work provides a simple design strategy to synthesize M–N–C catalysts with increased accessible active site density and enhanced mass transport for ORR and other electrocatalytic applications.
Ultrasound-Driven Defect Engineering in TiO2–x Nanotubes─Toward Highly Efficient Platinum Single Atom-Enhanced Photocatalytic Water Splitting
ACS Applied Materials & Interfaces ( IF 10.383 ) Pub Date : 2023-07-25 , DOI: 10.1021/acsami.3c04811
Single-atom catalysts (SACs) have demonstrated superior catalytic activity and selectivity compared to nanoparticle catalysts due to their high reactivity and atom efficiency. However, stabilizing SACs within hosting substrates and their controllable loading preventing single atom clustering remain the key challenges in this field. Moreover, the direct comparison of (co-) catalytic effect of single atoms vs nanoparticles is still highly challenging. Here, we present a novel ultrasound-driven strategy for stabilizing Pt single-atomic sites over highly ordered TiO2 nanotubes. This controllable low-temperature defect engineering enables entrapment of platinum single atoms and controlling their content through the reaction time of consequent chemical impregnation. The novel methodology enables achieving nearly 50 times higher normalized hydrogen evolution compared to pristine titania nanotubes. Moreover, the developed procedure allows the decoration of titania also with ultrasmall nanoparticles through a longer impregnation time of the substrate in a very dilute hexachloroplatinic acid solution. The comparison shows a 10 times higher normalized hydrogen production of platinum single atoms compared to nanoparticles. The mechanistic study shows that the novel approach creates homogeneously distributed defects, such as oxygen vacancies and Ti3+ species, which effectively trap and stabilize Pt2+ and Pt4+ single atoms. The optimized platinum single-atom photocatalyst shows excellent performance of photocatalytic water splitting and hydrogen evolution under one sun solar-simulated light, with TOF values being one order of magnitude higher compared to those of traditional thermal reduction-based methods. The single-atom engineering based on the creation of ultrasound-triggered chemical traps provides a pathway for controllable assembling stable and highly active single-atomic site catalysts on metal oxide support layers.
Unveiling Charge-Transfer Dynamics at Singlet Fission Layer/Hybrid Perovskite Interface
ACS Applied Materials & Interfaces ( IF 10.383 ) Pub Date : 2023-07-26 , DOI: 10.1021/acsami.3c06933
Singlet fission (SF) materials have been applied in various types of solar cells to pursue higher power conversion efficiency (PCE) beyond the Shockley–Queisser (SQ) limit. SF implementation in perovskite solar cells has not been successfully realized yet due to the insufficient understanding of the SF/perovskite heterojunctions. In this work, we attempt to elucidate the charge dynamics of an SF/perovskite system by incorporating a well-known SF molecule, TIPS-pentacene, and a triple-cation perovskite Cs0.05(FA0.85MA0.15)0.95PbI2.55Br0.45, owing to their well-matched energy structures. The transient absorption spectra and kinetic fitting plots suggest an electron-transfer process from the triplet state of TIPS-pentacene to perovskite in the picosecond regime, which increases the carrier density by 20% in the perovskite layer. This work confirms the existence of an electron-transfer process between the SF material and perovskite, providing a pathway to SF-enhanced perovskite solar cells.
Turning 3D Covalent Organic Frameworks into Luminescent Ratiometric Temperature Sensors
ACS Applied Materials & Interfaces ( IF 10.383 ) Pub Date : 2023-07-27 , DOI: 10.1021/acsami.3c07544
In this study, we report hybrid crystalline lanthanide-containing 3D covalent organic framework (Ln@3D COF) materials that are suitable for temperature sensing applications. Different routes to obtain these hybrid materials were tested and compared for material quality and thermometric properties. In the first approach, a bipyridine-containing 3D COF (Bipy COF) was grafted with a range of visible emitting lanthanide (Eu3+, Tb3+, Dy3+, and Eu3+/Tb3+) β-diketonate complexes. In the second approach, a novel nanocomposite material was prepared by embedding NaYF4:Er,Yb nanoparticles on the surface of a nonfunctionalized 3D COF (COF-300). To the best of our knowledge, the luminescent materials developed here are the first 3D COFs to be tested as ratiometric temperature sensors. In fact, for the Bipy COF, two different types of thermometers were tested (the Eu3+/Tb3+ system and a rare Dy3+ system), with both showing excellent temperature sensing properties. The reported NaYF4:Er,Yb/COF-300 nanocomposite material combines upconverting nanoparticles with 3D COFs, similar to previously reported metal organic framework (MOF) nanocomposite materials; however, this type of hybrid material has not yet been explored for COFs. As such, our findings open a new pathway toward potential multifunctional materials that can combine thermometry with other modalities, such as catalysis or drug delivery, in just one nanocomposite material.
Real-Time Imaging and Quantitative Evolution for Pyrolysis of Carbon Dots-Encapsulated Metal–Organic Frameworks at the Nanoscale by In Situ Environmental Transmission Electron Microscopy
ACS Applied Materials & Interfaces ( IF 10.383 ) Pub Date : 2023-07-14 , DOI: 10.1021/acsami.3c05715
The pyrolysis of metal–organic frameworks (MOF) has been widely used approach to generate hierarchical structures with the corresponding metal, metal carbide, or metal oxide nanoparticles embedded in a porous carbon matrix with a high specific surface area for industrial catalysis, energy storage and transfer, etc. MOF-derived heterogeneous catalysts can be constructed by the encapsulation of carbon dots (CDs) with plenty of hydroxyl and amine groups to enhance the performance of the final product. Controlled formation of metallic carbon structures at the nanoscale, especially matter cycling and transformation on the nanoscale interface, is important for the production of industrial catalysts as well as the research of materials science and engineering progress. However, the mass transfer at the nanoscale during the processing of MOF pyrolysis remains less understood due to the lack of direct observation. Herein, by using in situ environmental transmission electron microscopy, real-time imaging and quantitative evolution of porous carbon decorated with metal species by the pyrolysis of CDs-encapsulated zeolitic imidazolate framework-67 are achieved. The migration of Co, the flow of aggregates, and the growth of carbon nanotubes observed in the nanoscale pyrolysis laboratory working at 600 °C with an air atmosphere are present. Experimental studies based on reduction and oxidation reaction models reveal that the synergistic effect between doped graphite nitrogen and confined Co nanoparticles is beneficial for boosting catalytic performance.
2D Amorphous GaOX Gate Dielectric for β-Ga2O3 Field-Effect Transistors
ACS Applied Materials & Interfaces ( IF 10.383 ) Pub Date : 2023-07-27 , DOI: 10.1021/acsami.3c07126
Appropriate gate dielectrics must be identified to fabricate metal–insulator–semiconductor field-effect transistors (MISFETs); however, this has been challenging for compound semiconductors owing to the absence of high-quality native oxides. This study uses the liquid-gallium squeezing technique to fabricate 2D amorphous gallium oxide (GaOX) with a high dielectric constant, where its thickness is precisely controlled at the atomic scale (monolayer, ∼4.5 nm; bilayer, ∼8.5 nm). Beta-phase gallium oxide (β-Ga2O3) with an ultrawide energy bandgap (4.5–4.9 eV) has emerged as a next-generation power semiconductor material and is presented here as the channel material. The 2D amorphous GaOX dielectric is combined with a β-Ga2O3 conducting nanolayer, and the resulting β-Ga2O3 MISFET is stable up to 250 °C. The 2D amorphous GaOX is oxygen-deficient, and a high-quality interface with excellent uniformity and scalability forms between the 2D amorphous GaOX and β-Ga2O3. The fabricated MISFET exhibits a wide gate-voltage swing of approximately +5 V, a high current on/off ratio, moderate field-effect carrier mobility, and a decent three-terminal breakdown voltage (∼138 V). The carrier transport of the Ni/GaOX/β-Ga2O3 metal–insulator–semiconductor (MIS) structure displays a combination of Schottky emission and Fowler–Nordheim (F–N) tunneling in the high-gate-bias region at 25 °C, whereas at elevated temperatures it shows Schottky emission and F–N tunneling in the low- and high-gate-bias regions, respectively. This study demonstrates that a 2D GaOX gate dielectric layer can be produced and incorporated into an active channel layer to form an MIS structure at room temperature (∼25 °C), which enables the facile fabrication of MISFET devices.
1 2 6 下页
中科院SCI期刊分区
大类学科 小类学科 TOP 综述
工程技术1区 MATERIALS SCIENCE, MULTIDISCIPLINARY 材料科学:综合2区
补充信息
自引率 H-index SCI收录状况 PubMed Central (PML)
8.30 124 Science Citation Index Science Citation Index Expanded
投稿指南
期刊投稿网址
https://acs.manuscriptcentral.com/acs
收稿范围
ACS Applied Materials&Interfaces为化学家、工程师、物理学家和生物学家等的跨学科领域提供服务,重点是如何开发新材料和研究界面过程并运用。无论是发表的文章数量还是这些文章所产生的影响,编辑都为创刊以来的快速增长而感到骄傲和自豪。 ACS Applied Materials&Interfaces也是真正的国际化期刊,目前大多数已发表的文章均来自美国以外的地区,促进了全球应用研究的快速增长。期刊收录研究方向:材料和界面的生物医学应用,能源、环境和催化的应用,功能无机材料和器件,有机电子器件,功能纳米材料,高分子、复合和涂层材料的应用,表面、界面及其应用。
收录载体
Articles Reviews Spotlights Forum Articles Comments
微信二维码
  • 微信公众号二维码
  • 关注官方微信公众号
  • 微信二维码
  • 微信扫码联系客服
平台客服