960化工网/ 文献
期刊名称:ACS Omega
期刊ISSN:2470-1343
期刊官方网站:https://pubs.acs.org/journal/acsodf
出版商:American Chemical Society (ACS)
出版周期:
影响因子:4.1
始发年份:0
年文章数:2043
是否OA:是
Pesticide Residue Fast Screening Using Thermal Desorption Multi-Scheme Chemical Ionization Mass Spectrometry (TD-MION MS) with Selective Chemical Ionization
ACS Omega ( IF 4.1 ) Pub Date : 2023-07-15 , DOI: 10.1021/acsomega.3c00385
In this work, the detection characteristics of a large group of common pesticides were investigated using a multi-scheme chemical ionization inlet (MION) with a thermal desorption unit (Karsa Ltd.) connected to an Orbitrap (Velos Pro, Thermo Fisher Scientific) mass spectrometer. Standard pesticide mixtures, fruit extracts, untreated fruit juice, and whole fruit samples were inspected. The pesticide mixtures contained 1 ng of each individual target. Altogether, 115 pesticides were detected, with a set of different reagents (i.e., dibromomethane, acetonylacetone, and water) in different polarity modes. The measurement methodology presented was developed to minimize the common bottlenecks originating from sample pretreatments and nonetheless was able to retrieve 92% of the most common pesticides regularly analyzed with standardized UHPLC–MSMS (ultra-high-performance liquid chromatography with tandem mass spectrometry) procedures. The fraction of detected targets of two standard pesticide mixtures generally quantified by GC–MSMS (gas chromatography with tandem mass spectrometry) methodology was much less, equaling 45 and 34%. The pineapple swabbing experiment led to the detection of fludioxonil and diazinon below their respective maximum residue levels (MRLs), whereas measurements of untreated pineapple juice and other fruit extracts led to retrieval of dimethomorph, dinotefuran, imazalil, azoxystrobin, thiabendazole, fludioxonil, and diazinon, also below their MRL. The potential for mutual detection was investigated by mixing two standard solutions and by spiking an extract of fruit with a pesticide’s solution, and subsequently, individual compounds were simultaneously detected. For a selected subgroup of compounds, the bromide (Br–) chemical ionization characteristics were further inspected using quantum chemical computations to illustrate the structural features leading to their sensitive detection. Importantly, pesticides could be detected in actual extract and fruit samples, which demonstrates the potential of our fast screening method.
Modified Tacrine Derivatives as Multitarget-Directed Ligands for the Treatment of Alzheimer’s Disease: Synthesis, Biological Evaluation, and Molecular Modeling Study
ACS Omega ( IF 4.1 ) Pub Date : 2023-07-12 , DOI: 10.1021/acsomega.3c02051
To develop multitarget-directed ligands (MTDLs) as potential treatments for Alzheimer’s disease (AD) and to shed light on the effect of the chromene group in designing these ligands, 35 new tacrine-chromene derivatives were designed, synthesized, and biologically evaluated. Compounds 5c and 5d exhibited the most desirable multiple functions for AD; they were strong hAChE inhibitors with IC50 values of 0.44 and 0.25 μM, respectively. Besides, their potent BuChE inhibitory activity was 10- and 5-fold more active than rivastigmine with IC50 = 0.08 and 0.14 μM, respectively. Moreover, they could bind to the peripheral anionic site (PAS), influencing Aβ aggregation and decreasing Aβ-related neurodegeneration, especially compound 5d, which was 8 times more effective than curcumin with IC50 = 0.74 μM and 76% inhibition at 10 μM. Compounds 5c and 5d showed strong BACE-1 inhibition at the submicromolar level with IC50 = 0.38 and 0.44 μM, respectively, which almost doubled the activity of curcumin. They also showed single-digit micromolar inhibitory activity against MAO-B with IC50 = 5.15 and 2.42 μM, respectively. They also had antioxidant activities and showed satisfactory metal-chelating properties toward Fe+2, Zn+2, and Cu+2, inhibiting oxidative stress in AD brains. Furthermore, compounds 5c and 5d showed acceptable relative safety upon normal cells SH-SY5Y and HepG2. It was shown that 5c and 5d were blood–brain barrier (BBB) penetrants by online prediction. Taken together, these multifunctional properties highlight that compounds 5c and 5d can serve as promising candidates for the further development of multifunctional drugs against AD.
Discovery of a Hidden Trypanosoma cruzi Spermidine Synthase Binding Site and Inhibitors through In Silico, In Vitro, and X-ray Crystallography
ACS Omega ( IF 4.1 ) Pub Date : 2023-07-12 , DOI: 10.1021/acsomega.3c01314
In drug discovery research, the selection of promising binding sites and understanding the binding mode of compounds are crucial fundamental studies. The current understanding of the proteins-ligand binding model extends beyond the simple lock and key model to include the induced-fit model, which alters the conformation to match the shape of the ligand, and the pre-existing equilibrium model, selectively binding structures with high binding affinity from a diverse ensemble of proteins. Although methods for detecting target protein binding sites and virtual screening techniques using docking simulation are well-established, with numerous studies reported, they only consider a very limited number of structures in the diverse ensemble of proteins, as these methods are applied to a single structure. Molecular dynamics (MD) simulation is a method for predicting protein dynamics and can detect potential ensembles of protein binding sites and hidden sites unobservable in a single-point structure. In this study, to demonstrate the utility of virtual screening with protein dynamics, MD simulations were performed on Trypanosoma cruzi spermidine synthase to obtain an ensemble of dominant binding sites with a high probability of existence. The structure of the binding site obtained through MD simulation revealed pockets in addition to the active site that was present in the initial structure. Using the obtained binding site structures, virtual screening of 4.8 million compounds by docking simulation, in vitro assays, and X-ray analysis was conducted, successfully identifying two hit compounds.
Development of Synthetic Aqueous Oil and Grease Standards for Determination of TOG in Produced Water: Evaluation of Alternative Methods for Application in an Offshore Environment
ACS Omega ( IF 4.1 ) Pub Date : 2023-07-12 , DOI: 10.1021/acsomega.3c02718
Produced water is present in oil and natural gas reservoirs and is transported to the surface along with the oil. Total oil and grease content (TOG) is the main parameter evaluated in this waste disposal category. Today, the validation of methods in the laboratory is not done using petroleum. The objective of this work was to develop synthetic oily water standards that can be applied for internalization and validation in the laboratory. Oil weighing protocols, the influence of volatile compounds, and a procedure for preparing oily water with high reproducibility were studied. Synthetic oily water standards were prepared for TOG determination by gravimetric and infrared methods. Repeatability of 3.8 and 11% and accuracy of 85 and 105% were obtained using gravimetric and infrared methods. These results indicate that with the development of these standards, it is possible to validate methodologies for TOG determination using petroleum.
From Eberthella typhi to Salmonella Typhi: The Fascinating Journey of the Virulence and Pathogenicity of Salmonella Typhi
ACS Omega ( IF 4.1 ) Pub Date : 2023-07-14 , DOI: 10.1021/acsomega.3c02386
Salmonella Typhi (S. Typhi), the invasive typhoidal serovar of Salmonella enterica that causes typhoid fever in humans, is a severe threat to global health. It is one of the major causes of high morbidity and mortality in developing countries. According to recent WHO estimates, approximately 11–21 million typhoid fever illnesses occur annually worldwide, accounting for 0.12–0.16 million deaths. Salmonella infection can spread to healthy individuals by the consumption of contaminated food and water. Typhoid fever in humans sometimes is accompanied by several other critical extraintestinal complications related to the central nervous system, cardiovascular system, pulmonary system, and hepatobiliary system. Salmonella Pathogenicity Island-1 and Salmonella Pathogenicity Island-2 are the two genomic segments containing genes encoding virulent factors that regulate its invasion and systemic pathogenesis. This Review aims to shed light on a comparative analysis of the virulence and pathogenesis of the typhoidal and nontyphoidal serovars of S. enterica.
Determining the Predominant Conformations of Mortiamides A–D in Solution Using NMR Data and Molecular Modeling Tools
ACS Omega ( IF 4.1 ) Pub Date : 2023-07-11 , DOI: 10.1021/acsomega.3c01206
Macrocyclic peptidomimetics have been seriously contributing to our arsenal of drugs to combat diseases. The search for nature’s discoveries led us to mortiamides A–D (found in a novel fungus from Northern Canada), which is a family of cyclic peptides that clearly have demonstrated impressive pharmaceutical potential. This prompted us to learn more about their solution-state properties as these are central for binding to target molecules. Here, we secured and isolated mortiamide D, and then acquired high-resolution nuclear magnetic resonance (NMR) data to learn more about its structure and dynamics attributes. Sets of two-dimensional NMR experiments provided atomic-level (through-bond and through-space) data to confirm the primary structure, and NMR-driven molecular dynamics (MD) simulations suggested that more than one predominant three-dimensional (3D) structure exist in solution. Further steps of MD simulations are consistent with the finding that the backbones of mortiamides A–C also have at least two prominent macrocyclic shapes, but the side-chain structures and dynamics differed significantly. Knowledge of these solution properties can be exploited for drug design and discovery.
Degradation of the Three-Phase Boundary Zone of Carbon Fiber Anodes in an Electrochemical System
ACS Omega ( IF 4.1 ) Pub Date : 2023-07-13 , DOI: 10.1021/acsomega.3c02900
The electrochemical recycling nanoarchitectonics of graphene oxide from carbon fiber reinforced polymers (CFRPs) is a promising approach due to its economic and environmental benefits. However, the rapid degradation of the CFRP anode during the recycling process reduces its overall efficiency. Although previous studies have investigated the electrochemical oxidation of carbon fibers (CFs) and bonding of CFs to the matrix, few researchers have explicitly studied the electrochemical activity of CFs and the possible fracture caused by strong electrochemical reactions. To address this gap, this study investigates the degradation mechanism of CF anodes by analyzing changes in overall mechanical properties, hardness, elastic modulus, functional groups, and elemental composition of individual fibers. The experimental results demonstrate that the three-phase boundary region experiences the most severe degradation, primarily due to the number of oxygen-containing functional groups, which is the most important factor affecting the degree of degradation. This continuous decrease in the hardness and elastic modulus of individual fibers eventually leads to the fracture of CF anodes.
Unique Cluster-Support Effect of a Co3O4/TiO2-3DHS Nanoreactor for Efficient Plasma-Catalytic Oxidation Performance
ACS Omega ( IF 4.1 ) Pub Date : 2023-07-12 , DOI: 10.1021/acsomega.3c02132
For environmental catalysis, a central topic is the design of high-performance catalysts and advanced mechanism studies. In the case of the removal of flue gas pollutants from coal-fired power plants, highly selective nanoreactors have been widely utilized together with plasma discharge characteristics, such as the catalytic oxidation of NO. Herein, a novel reactor with a three-dimensional hollow structure of TiO2 confining Co3O4 nanoclusters (Co3O4/TiO2-3DHS) has been developed for plasma-catalytic oxidation of NO, whose performance was compared with that of the commercial TiO2 confining Co3O4 cluster (Co3O4/TiO2). Specifically, Co3O4/TiO2-3DHS presented a higher efficiency (almost 100%) within lower peak–peak voltage (VP–P). More importantly, the NO oxidation efficiency was between 91.5 and 94.5% after a long time of testing, indicating that Co3O4/TiO2-3DHS exhibits more robust sulfur and water tolerance. Density functional theory calculations revealed that such impressive performance originates from the unique cluster-support effect, which changes the distribution of the active sites on the catalyst surface, resulting in the selective adsorption of flue gas. This investigation provides a new strategy for constructing a three-dimensional hollow nanoreactor for the plasma-catalytic process.
Simultaneous Hydrodistillation of Cedrus atlantica Manetti and Salvia rosmarinus Spenn: Optimization of Anti-Wood-Decay Fungal Activity Using Mixture Design Methodology
ACS Omega ( IF 4.1 ) Pub Date : 2023-07-12 , DOI: 10.1021/acsomega.3c01970
Chemical fungicides are often harmful to people and the environment because of their toxicity. The wood protection industry places a high priority on replacing them with natural products. Therefore, this investigation focused on developing a formulation of a binary combination of Salvia rosmarinus Spenn and Cedrus atlantica Manetti obtained by Simultaneous hydrodistillation to protect the wood from decay using a mixture design methodology. The chemical composition of essential oil was identified by gas chromatography coupled with mass spectrometry (GC/MS), and their anti-wood-decay fungal activity was assessed using the macrodilution method against four fungi responsible for wood decay: Coniophora puteana, Coriolus versicolor, Gloeophyllum trabeum, and Poria placenta. The results of GC/MS identified myrtenal as a new component appearing in all binary combinations. The optimum anti-wood-decay fungal activity was observed in a combination of 60% S. rosmarinus and 40% C. atlantica essential oils, providing an effective concentration for 50% of maximal effect (EC50) value of 9.91 ± 1.91 and 9.28 ± 1.55 μg/mL for C. puteana and C. versicolor, respectively. The highest anti-wood-decay fungal activity for G. trabeum and P. placenta was found in the combination of 55% of S. rosmarinus and 45% of C. atlantica essential oils, with EC50 values of 11.48 ± 3.73 and 22.619 ± 3.79 μg/mL, respectively. Combined simultaneous hydrodistillation improved the antifungal effect of these essential oils. These results could be used to improve antifungal activity and protect wood against wood-decay fungi.
Study on the Movement of Pulverized Coal Particles in Fractal Fracture Network
ACS Omega ( IF 4.1 ) Pub Date : 2023-07-16 , DOI: 10.1021/acsomega.3c02902
Coalbed methane (CBM) exploitation is a complex multiphase flow process. With the development of CBM extraction technology, it is recognized that the migration of reservoir fluid in the fracture network is affected by the matrix fracture structure, fracture width, and pulverized coal particles plugging, therefore the fluid-particle coupling problem has received increasing attention. In this paper, six groups of fracture models with different fractal dimensions are established using the Weierstrass–Mandelbrot function, and the fluid-particle coupling phenomena in fractures with different roughness and aperture are simulated using an immersed boundary-lattice Boltzmann method (IB-LBM), by comparing the numerical simulation results with the theoretical analysis, it is proved that the IB-LBM numerical method has high accuracy and effectiveness. The effects of fractal dimension, particle size, and particle concentration on the plugging effect were investigated. The results show that the plugging effect on the fracture is enhanced with the increase of the pulverized coal particles content. When the concentration and size of pulverized coal particles are the same, the migration path of pulverized coal particles in complex fractures is more tortuous and more likely to be plugged. It may lead to a shift in the main seepage network of the fracture and the formation of new seepage channels. The research in this paper provides a data basis for the formation and plugging pattern of pulverized coal particles in coal seam fractures, which can provide a basis for the control of pulverized coal particles concentration in CBM drainage.
Understanding the Stabilization Mechanism of a Thermostable Mutant of Hygromycin B Phosphotransferase by Protein Sector-Guided Dynamic Analysis
ACS Omega ( IF 4.1 ) Pub Date : 2023-07-12 , DOI: 10.1021/acsomega.3c00373
Point mutations can exert beneficial effects on proteins, including stabilization. The stabilizing effects of mutations are typically attributed to changes in free energy and residue interactions. However, these explanations lack detail and physical insights, which hinder the mechanistic study of protein stabilization and prevent accurate computational prediction of stabilizing mutations. Here, we investigate the physical mechanism underlying the enhanced thermostability of a Hygromycin B phosphotransferase mutant, Hph5. We find that the unpredictable mutation A118V induces rotation of F199, allowing it to establish an aromatic–aromatic interaction with W235. In contrast, the predictable mutation T246A acts through static hydrophobic interactions within the protein core. These discoveries were accelerated by a residue-coevolution-based theory, which links mutational effects to stability-associated local structures, providing valuable guidance for mechanistic exploration. The established workflow will benefit the development of accurate stability prediction programs and can be used to mine a protein stability database for undiscovered physical mechanisms.
Air Flow Movement Law in Working Face and Gob with Roof-Cutting and Pressure-Releasing Mining: A Numerical Simulation and Engineering Verification
ACS Omega ( IF 4.1 ) Pub Date : 2023-07-15 , DOI: 10.1021/acsomega.3c01912
In comparison to traditional longwall mining, “roof-cutting and pressure-releasing” mining along gob-side entry retaining changes the permeability of the gob, as well as the pressure-relief characteristics and caving mode of the overlying strata. These changes are a result of the interaction of these factors, which also changes the boundary condition of the gob and the airflow movement law of the working face and the gob. In order to study the law of air flow movement in the working face and gob under the “roof-cutting and pressure-releasing” mining along gob-side entry retaining, the permeability model of gob was established under the engineering background of the 21,304 experimental working face of Chengjiao coal mine, then using fluent numerical simulation software, the movement law of air flow in working face and gob is simulated. The results show that the law of air leakage is much different from that of traditional longwall mining, and there are two main air leakage routes, First, most of the airflow will flow directly into the gob-side entry retaining under the action of inertia, and it will collide with the air flow provided by the fan at the end of the gob-side entry retaining, and the air will leak in the gob along the airflow direction; second, when the remaining airflow flows to the working face, the air leakage is serious in the air inlet corner, and most of the air flow flows into the gob. In view of the air leakage area, the air leakage prevention measures are put forward, such as setting the baffle plate, hanging the wind shield at the corner, and blocking the wall of the roadway with guniting; the simulation results show that the air leakage area is obviously reduced, and it is consistent with the measured data. The simulation results can generally describe the law of air flow movement in the face and gob with “roof-cutting and pressure-releasing”.
Study on an Anti-adsorption Micromaterial Tracer System and Its Application in Fracturing Horizontal Wells of Coal Reservoirs
ACS Omega ( IF 4.1 ) Pub Date : 2023-07-27 , DOI: 10.1021/acsomega.3c03773
The high adsorption capacity of coal reservoirs poses a challenge to the evaluation of productivity and output profiles for each segment of fractured horizontal wells using tracers. In this study, the microstructure of a coal sample from block B and its absorption character to a micromaterial tracer are analyzed first. Then, an anti-adsorption micromaterial tracer system which is suitable for block B is proposed by evaluating different types of complexing agents and extractant agents. The system comprises micromaterial tracers (200 ppb) + ethylenediaminetetraacetic acid tetrasodium (EDTA-4Na in short) (0.01%) + di(2-ethylhexyl) phosphate (HDEHP in short) (0.001%), and its anti-adsorption character of the system is analyzed. The concentration dynamics of micromaterial tracers are analyzed by the flowback fluid testing of one fracturing well and two adjacent wells. Then, a judging method for productivity and connectivity of each segment of horizontal wells is established. Moreover, the anti-adsorption micromaterial tracer system judgment method is employed to analyze the staged fracturing performance of horizontal well B1 in the coal reservoir of block B. Eight types of micromaterial tracers are utilized to label the fluid in each fracturing segment for assessing the connectivity between well B1 and adjacent wells B1-1 and B1-2. The results show that the anti-adsorption micromaterial tracer system exhibits minimal adsorption loss and can be well applied in segment monitoring in the horizontal fracturing well of coal reservoirs. The main productive segments of well B1 are #1, #4, and #8. Well B1 exhibits good connectivity with adjacent well B1-1 in segments #1, #4, #6, and #8. Conversely, all segments of well B1 exhibit poor connectivity with adjacent well B1-2. The results can provide a dependable reference for optimizing fracturing parameters, well spacing, and productivity evaluation in coal reservoirs. The results obtained in this study are consistent with the results obtained by using the four-dimensional (4D in short) image monitoring technology, which proves the good accuracy and reliability of the micromaterial tracer monitoring method.
Novel Size-Tunable and Straightforward Ultra-Small Nanoparticle Synthesis in a Varying Concentration Range of Glycerol as a Green Reducing Solvent
ACS Omega ( IF 4.1 ) Pub Date : 2023-07-26 , DOI: 10.1021/acsomega.3c02697
Despite all the possibilities available so far for the synthesis of nanoparticles (NPs), synthesizing ultra-small (<10 nm) monodispersed particles is still demanding. Getting a particular size with a straightforward method is a trial-and-error approach. To explore this prospective, in the current study, we have introduced a protocol which offers a varying concentration range of glycerol to successfully generate the NPs of repeatable and consistent particle size in each synthesis, thus giving an alternative from lengthy tentative preparations and/or testing protocols. Since synthesizing controlled sized nanoparticles in aqueous medium is somewhat difficult as the balance of particle growth and nucleation is challenging to control, herein, we used a polyol method with glycerol both as a solvent medium as well as reducing species for silver nitrate, as an example model ion source, to execute the nanoparticle synthesis. In order to maintain the stability of the synthesized NPs, polyvinylpyrolidone (PVP) was added as a stabilizer. The synthesis, monodispersity, and stability were confirmed using techniques such as UV–vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and X-ray powder diffraction (XRD), while morphological analysis and ultra-small size validation were conducted using TEM, SEM, and AFM. Interestingly, in the various concentrations of glycerol solution used (10–100%), we have observed a tunable linear size range to obtain ultra-small nanoparticles (<10 nm) up to 60% glycerol, while further increasing the glycerol component increased the size approximately to ∼160 nm, providing tunable properties in this synthesis procedure. Hence, this study provides a distinct possibility to obtain ultra-small nanoparticles with a tunable size feature for further applications in numerous fields.
Raman Spectroscopy: A Tool for Molecular Fingerprinting of Brain Cancer
ACS Omega ( IF 4.1 ) Pub Date : 2023-07-27 , DOI: 10.1021/acsomega.3c01848
Brain cancer is one of those few cancers with very high mortality and low five-year survival rate. First and foremost reason for the woes is the difficulty in diagnosing and monitoring the progression of brain tumors both benign and malignant, noninvasively and in real time. This raises a need in this hour for a tool to diagnose the tumors in the earliest possible time frame. On the other hand, Raman spectroscopy which is well-known for its ability to precisely represent the molecular markers available in any sample given, including biological ones, with great sensitivity and specificity. This has led to a number of studies where Raman spectroscopy has been used in brain tumors in various ways. This review article highlights the fundamentals of Raman spectroscopy and its types including conventional Raman, SERS, SORS, SRS, CARS, etc. are used in brain tumors for diagnostics, monitoring, and even theragnostics, collating all the major works in the area. Also, the review explores how Raman spectroscopy can be even more effectively used in theragnostics and the clinical level which would make them a one-stop solution for all brain cancer needs in the future.
Preparation of 6-Monohalo-β-cyclodextrin Derivatives with Selectively Methylated Rims via Diazonium Salts
ACS Omega ( IF 4.1 ) Pub Date : 2023-07-27 , DOI: 10.1021/acsomega.3c01950
A series of 6-monohalo (Cl, Br, and I) β-cyclodextrin derivatives with various types of methylations were synthesized via a diazotization/nucleophilic displacement reaction from the corresponding methylated cyclodextrin amines. All four starting compounds (6A-amino-6A-deoxy derivatives of native β-CD, per-6-O-methyl-, per-2,3-O-methyl-, and per-2,3,6-O-methyl-β-CD) were found to have different reactivities under the same reaction conditions. Unsubstituted and fully per-O-methylated cyclodextrin amines undergo fast transformation, giving lower yields of the monohalogenated product. The selectively methylated cyclodextrin amines react remarkably slower and provide almost complete conversion into the desired monohalogenated compound. A pure product was, in several cases, successfully isolated with simple purification techniques (extraction and precipitation), allowing large-scale preparations. This new method opens the way for preparing poorly investigated monofunctionalized selectively methylated cyclodextrins.
Synthesis and Photophysical, Electrochemical, and DFT Studies of Piperidyl and Pyrrolidinyl Chalcones
ACS Omega ( IF 4.1 ) Pub Date : 2023-07-27 , DOI: 10.1021/acsomega.3c02813
Small organic molecules with interesting optical and electrochemical properties find applications as organic luminescent materials. In this work, we report the synthesis of novel chalcones with D–A–D and D–A–D–A architecture, followed by their optical, electrochemical, and computational studies. The absorption band of these compounds occurs at 360–480 nm with emission maxima appearing around 513–552 nm. The large Stokes shifts (Δλ) for all compounds (90–132 nm) suggest intramolecular charge transfer (ICT) in the excited states. The molar absorptivity and fluorescence quantum yields were found to be in the range of 1.7–4.26 × 104 M–1 cm–1 and 0.29–0.39, respectively. The electrochemical parameters were determined by using cyclic voltammetry (CV). Density functional theory (DFT) calculations of all compounds were made by using B3LYP/G (d,p) functionals in chloroform and were found to have a good correlation with experimental results. Preliminary studies of absorption, photoluminescence, CV, and their theoretical correlation suggest that these compounds may be optimized for their applications in optoelectronics, sensing, and bioimaging.
Synergistic Effects between Multiphase Thermal Insulation Functional Phases on the Mechanical and Heat Insulation Properties of Silicone Rubber Composites
ACS Omega ( IF 4.1 ) Pub Date : 2023-07-27 , DOI: 10.1021/acsomega.2c03572
This work utilizes the synergistic effect between three different functional phases of thermal insulation, i.e., hollow ceramic microspheres (HCMs), hollow silica microspheres (HSMs), and hydroxy silicone oil blowing agent, to prepare a flexible and efficient thermal insulation composite with low thermal conductivity and high structural strength. First, the effects of the three phases on the mechanical and thermomechanical properties of silicon rubber (SR) were analyzed using a scanning electron microscope (SEM), a thermogravimetric (TG) analyzer, a thermal conductivity meter, and a universal testing machine, respectively. Then, the thermal insulation mechanism of multiphase thermal insulation composite materials was analyzed. The results show that the thermal stability and mechanical performance of composites were significantly enhanced, particularly for sample 18H, whose Tmax and char yield reached 621.3 °C and 77.5%, respectively, representing a respective increase of 12.1 and 35.3% compared to those of pure SR. After heat treatment at 1000 °C, the linear shrinkage of the sample diameter was about 9.4%, while the thermal conductivity was as low as 0.064 W/(m·K), which was 53.2% lower than that of the pure matrix SR. We believe that this work can serve as a reference for the preparation of heat insulation and protection materials with low thermal conductivity and high structural strength.
Improved Harmony Search Algorithm for Enhancing Efficiency and Quality in Optimization of the Distillation Process
ACS Omega ( IF 4.1 ) Pub Date : 2023-07-26 , DOI: 10.1021/acsomega.3c02785
Reducing production costs is one of the main objectives of process intensification; in this work, production costs of the distillation process are reduced by reducing equipment size and utility consumption from the perspective of process optimization to achieve the purpose of process intensification. The application of intelligent optimization algorithms in the optimization process of distillation is vital to achieving high efficiency and low costs. Combining the harmony search algorithm with the characteristics of distillation optimization, a new distillation harmony search algorithm (DHSA) was proposed, which includes the self-adaptive adjustment of parameters, roulette selection strategy, and ratio optimization strategy. Benefiting from the DHSA, the optimal total annual cost and calculation times were remarkably reduced when compared with reported algorithms in the optimization of four distillation cases including the two-column model, three-column model, reactive distillation column model, and dividing-wall extractive distillation column model. In addition, the highest coefficient of variation of DHSA in 10 parallel calculations is 1.25%. These results indicate that DHSA has the advantages of a higher-quality solution, less computing time, and higher stability, which not only improves the optimization efficiency and quality but also inspires the optimization strategies for other algorithms.
Analysis of the Contribution of Petroleum Acid Components to the Viscosity of Heavy Oils with High TAN
ACS Omega ( IF 4.1 ) Pub Date : 2023-07-26 , DOI: 10.1021/acsomega.3c04098
The viscosity of heavy oil hinders its cold production, posing a major challenge to its exploitation. The high viscosity of heavy oil can be attributed to the content of asphaltene. However, during the collection of heavy oil samples from various regions in China, we observed that heavy oils with high total acid number (TAN) but low asphaltene content also exhibit relatively high viscosity. Hence, the viscosity mechanism of high-acid crude oil, the influence of petroleum acid on heavy oil viscosity, should be investigated. In this study, Xinjiang Chunfeng heavy oil was selected for analysis, possessing a viscosity of 16,886 mPa·s at 50 °C and a high total acid number (TAN) of 17.72 mg KOH/g. Separation was performed on the deacidified oil and the acid component using an alkali-modified silica gel column. The viscosity changes of the deacidified oil and its blends with varying proportions of the acid component were determined, along with the viscosity changes of the deacidified oil and acid components in a toluene solution. The molecular composition was analyzed using a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS). The findings indicated successful separation of petroleum acid from the heavy oil, the acid component yield being 16.65 wt %. Furthermore, the viscosity of the petroleum acid was significantly higher than that of the deacidified oil. The rate of viscosity change of the acid component in the toluene solvent exceeded that of the deacidified oil, and the viscosity of the deacidified oil notably increased upon the addition of acid. In conjunction with the viscosity data, it was observed that the deacidified oil exhibited the removal of O2 and O4 compounds, resulting in a 43.11% viscosity reduction at 30 °C compared with crude oil. Thus, the monoacid and diacid components considerably affected the viscosity of heavy oil.
1 2 6 下页
中科院SCI期刊分区
大类学科 小类学科 TOP 综述
化学3区 CHEMISTRY, MULTIDISCIPLINARY 化学综合4区
补充信息
自引率 H-index SCI收录状况 PubMed Central (PML)
6.10 0
投稿指南
期刊投稿网址
https://acsparagonplus.acs.org/psweb
收稿范围
ACS Omega是面向科学文章的开放式全球出版物,收录了化学领域和科学界的新发现。ACS Omega收录的文章应该通过新颖的观点来推进科学的发展,即使其全部意义尚不明朗。ACS Omega迅速地使所有收录的文章永久开放获取,因而在全球范围内快速传播。因此,在ACS Omega上发表的论文不仅面向传统学术领域,还面向包括工业、政策机构、媒体和公众在内的广大读者。 期刊收录研究方向:化学,化学综合
收录载体
Research Articles Perspectives Mini-Reviews
微信二维码
  • 微信公众号二维码
  • 关注官方微信公众号
  • 微信二维码
  • 微信扫码联系客服
平台客服