960化工网/ 文献
期刊名称:ACS Organic & Inorganic Au
期刊ISSN:
期刊官方网站:
出版商:
出版周期:
影响因子:0
始发年份:0
年文章数:0
是否OA:
NO Generation from Nitrite at Zinc(II): Role of Thiol Persulfidation in the Presence of Sulfane Sulfur
ACS Organic & Inorganic Au ( IF 0 ) Pub Date : 2023-06-14 , DOI: 10.1021/acsorginorgau.3c00004
Nitrite-to-NO transformation is of prime importance due to its relevance in mammalian physiology. Although such a one-electron reductive transformation at various redox-active metal sites (e.g., Cu and Fe) has been illustrated previously, the reaction at the [ZnII] site in the presence of a sacrificial reductant like thiol has been reported to be sluggish and poorly understood. Reactivity of [(Bn3Tren)ZnII–ONO](ClO4) (1), a nitrite-bound model of the tripodal active site of carbonic anhydrase (CA), toward various organic probes, such as 4-tert-butylbenzylthiol (tBuBnSH), 2,4-di-tert-butylphenol (2,4-DTBP), and 1-fluoro-2,4-dinitrobenzene (F-DNB), reveals that the ONO-moiety in the [ZnII]–nitrite coordination motif of complex 1 acts as a mild electrophile. tBuBnSH reacts mildly with nitrite at a [ZnII] site to provide S-nitrosothiol tBuBnSNO prior to the release of NO in 10% yield, whereas the phenolic substrate 2,4-DTBP does not yield the analogous O-nitrite compound (ArONO). The presence of sulfane sulfur (S0) species such as elemental sulfur (S8) and organic polysulfides (tBuBnSnBntBu) during the reaction of tBuBnSH and [ZnII]–nitrite (1) assists the nitrite-to-NO conversion to provide NO yields of 65% (for S8) and 76% (for tBuBnSnBntBu). High-resolution mass spectrometry (HRMS) analyses on the reaction of [ZnII]–nitrite (1), tBuBnSH, and S8 depict the formation of zinc(II)-persulfide species [(Bn3Tren)ZnII–Sn–BntBu]+ (where n = 2, 3, 4, 5, and 6). Trapping of the persulfide species (tBuBnSS–) with 1-fluoro-2,4-dinitrobenzene (F-DNB) confirms its intermediacy. The significantly higher nucleophilicity of persulfide species (relative to thiol/thiolate) is proposed to facilitate the reaction with the mildly electrophilic [ZnII]–nitrite (1) complex. Complementary analyses, including multinuclear NMR, electrospray ionization-MS, UV–vis, and trapping of reactive S-species, provide mechanistic insights into the sulfane sulfur-assisted reactions between thiol and nitrite at the tripodal [ZnII]-site. These findings suggest the critical influential roles of various reactive sulfur species, such as sulfane sulfur and persulfides, in the nitrite-to-NO conversion.
Computational Investigation into Heteroleptic Photoredox Catalysts Based on Nickel(II) Tris-Pyridinethiolate for Water Splitting Reactions
ACS Organic & Inorganic Au ( IF 0 ) Pub Date : 2022-10-31 , DOI: 10.1021/acsorginorgau.2c00040
This work demonstrates a strategy to fine-tune the efficiency of a photoredox water splitting Ni(II) tris-pyridinethiolate catalyst through heteroleptic ligand design using computational investigation of the catalytic mechanism. Density functional theory (DFT) calculations, supported by topology analyses using quantum theory of atoms in molecules (QTAIM), show that the introduction of electron donating (ED) −CH3 and electron withdrawing (EW) −CF3 groups on the thiopyridyl (PyS–) ligands of the same complex can tune the pKa and E0, simultaneously. Computational modeling of two heteroleptic nickel(II) tris-pyridinethiolate complexes with 2:1 and 1:2 ED and EW −CH3 and −CF3 group containing PyS– ligands, respectively, suggests that the ideal combination of EW to ED groups is 2:1. This work also outlines the possibility of formation of a large number of isomers after the protonation of one of the pyridyl N atoms and suggests that to acquire unambiguous computational results it is necessary to carefully account for all possible geometric isomers.
The Question of the Redox Site in Metal–Metal Multiple-Bonded Metallocorrole Dimers
ACS Organic & Inorganic Au ( IF 0 ) Pub Date : 2022-10-26 , DOI: 10.1021/acsorginorgau.2c00030
We have revisited the electrochemistry of metallocorrole dimers with low-temperature cyclic voltammetry and UV–visible–NIR spectroelectrochemistry, with the aim of determining the sites of the redox processes undergone by these compounds. The systems studied include the metal–metal triple-bonded complexes {Ru[TpOMePC]}2 and {Os[TpOMePC]}2 and the metal–metal quadruple-bonded complex {Re[TPC]}2, where TpOMePC and TPC refer to trianionic meso-tris(p-methoxyphenyl)corrole and meso-triphenylcorrole ligands. For all three compounds, the first oxidation potentials are found at 0.52 ± 0.04 V vs SCE in CH2Cl2/0.1 M TBAP and are accompanied by major changes in the optical spectra, especially the appearance of broad, low-energy bands, suggesting macrocycle-centered oxidation in each case. In contrast, the reduction potentials span an 800 mV range, occurring at E1/2 = −0.52 V for {Re[TPC]}2, −0.81 V for {Ru[TpOMePC]}2, and −1.32 V for {Os[TpOMePC]}2, with more modest changes in the optical spectra, implying a significant metal-centered character in the reduction process. Density functional theory (DFT) calculations largely (but not entirely) bear out these expectations. The combined experimental and theoretical data indicate that one-electron addition to the Re dimer involves the Re–Re δ* LUMO, while one-electron addition to the Ru dimer largely involves the Ru–Ru π* LUMO. In contrast, the calculations suggest that one-electron reduction of the Os dimer occurs largely on the corrole ligands, a phenomenon attributed to the relativistic destabilization of the Os–Os π* MOs.
Direct Access to Unnatural Cyclobutane α-Amino Acids through Visible Light Catalyzed [2+2]-Cycloaddition
ACS Organic & Inorganic Au ( IF 0 ) Pub Date : 2022-08-09 , DOI: 10.1021/acsorginorgau.2c00026
In this work, we report the first selective, photocatalyzed [2+2]-cycloaddition of dehydroamino acids with styrene-type olefins. This simple, mild, and scalable approach relies on the use of the triplet energy transfer catalyst [Ir(dFCF3ppy2)dtbpy]PF6 under visible light irradiation and provides fast access to value-added substituted strained cyclobutane α-amino acid derivatives.
Triazolyl- vs Pyridyl-Functionalized N-Heterocyclic Carbene Complexes: Impact of the Pendant N-Donor Ligand on Intramolecular C–C Bond Formation
ACS Organic & Inorganic Au ( IF 0 ) Pub Date : 2022-09-20 , DOI: 10.1021/acsorginorgau.2c00035
Organometallic Rh(Cp*) (Cp* = η5-pentamethylcyclopentadienyl) complexes with monodentate N-heterocyclic carbene (NHC) ligands bearing a pendant anthracenyl substituent have been shown to undergo intramolecular C–C coupling reactions. Herein, two bidentate NHC ligands substituted with pyridyl or triazolyl donor groups were prepared along with the corresponding MII/III (M = RuII, OsII, RhIII, IrIII) complexes. While the Rh(Cp*) complex featuring an NHC-triazole bidentate ligand underwent the equivalent reaction as the monodentate Rh(NHC) complex, i.e., it formed a polydentate ligand, the pyridyl-pendant derivative was unequivocally shown to be unreactive. This contrasting behavior was further investigated by density functional theory (DFT) calculations that highlighted significant differences between the two types of Rh(III) complexes with pendant pyridyl or triazolyl N-coordinating groups. Modeling of the reaction pathways suggests that the initial formation of a dicationic Rh(III) species is unfavorable and that the internal ligand transformation proceeds first by dissociation of the coordinated N atom of the pendant group from the Rh center. After the formation of a neutral η4-fulvene ligand via combined proton/single electron transfer, a cycloaddition occurs between the exo-ene bond of fulvene and the 9′ and 10′ positions on the pendant anthracenyl group. The resulting experimental UV–visible spectrum recorded in methanol of the polydentate triazolyl-based Rh species revealed the loss of the vibronic coupling typically associated with an anthracenyl functional group. Moreover, TD-DFT modeling indicates the presence of an equilibrium process whereby the N-coordination of the pendant triazolyl group to the RhIII center appears to be highly labile. Charge decomposition analysis (CDA) of the DFT-modeled species with the dissociated triazolyl group revealed a pseudo-η3-allylic interaction between the π-type MOs of the transformed anthracenyl group and the RhIII center; thus, the singly attached chelating ligand is classified as having rare nonadenticity.
Asymmetric Syntheses of Enantioenriched 2,5-Disubstituted Pyrrolidines
ACS Organic & Inorganic Au ( IF 0 ) Pub Date : 2023-03-08 , DOI: 10.1021/acsorginorgau.2c00061
C2-Symmetrical scaffolds are privileged ligands in metal catalysis and are also widely used in organocatalysis. Among these, 2,5-disubstituted pyrrolidines hold a paramount importance, especially since they also find application in medicinal chemistry. This review highlights the stereoselective syntheses of these C2-symmetrical nitrogen heterocycles. It includes synthetic strategies based on the use of the chiral pool as well as the more recent sequences designed following major achievements in asymmetric catalysis.
Photochemical [2 + 2] Cycloaddition of Alkenes with Maleimides: Highlighting the Differences between N-Alkyl vs N-Aryl Maleimides
ACS Organic & Inorganic Au ( IF 0 ) Pub Date : 2022-12-08 , DOI: 10.1021/acsorginorgau.2c00053
Throughout the last 15 years, there has been increased research interest in the use of light promoting organic transformations. [2 + 2] Cycloadditions are usually performed photochemically; however, literature precedent on the reaction between olefins and maleimides is limited to a handful of literature examples, focusing mainly on N-aliphatic maleimides or using metal catalysts for visible-light driven reactions of N-aromatic maleimides. Herein, we identify the differences in reactivity between N-alkyl and N-aryl maleimides. For our optimized protocols, in the case of N-alkyl maleimides, the reaction with alkenes proceeds under 370 nm irradiation in the absence of an external photocatalyst, leading to products in high yields. In the case of N-aryl maleimides, the reaction with olefins requires thioxanthone as the photosensitizer under 440 nm irradiation.
3-Sulfonylindoles via Gold- or Silver-Catalyzed Cyclization─1,3-Sulfonyl Migration Sequences under Visible Light Irradiation
ACS Organic & Inorganic Au ( IF 0 ) Pub Date : 2022-09-28 , DOI: 10.1021/acsorginorgau.2c00034
A pathway for the synthesis of 3-sulfonylindoles has been devised. Upon blue LED irradiation, in the presence of a gold(I) or a silver(I) salt, ortho-alkynyl N-sulfonyl precursors readily undergo a 5-endo-dig cyclization concomitant with a 1,3-sulfonyl migration. While the gold-catalyzed reaction takes place in photocatalyst-free conditions, an iridium photocatalyst (Ir[dF(CF3)ppy]2(dtbbpy)PF6) is necessary with silver catalysis. Mechanistic studies featuring the generation of a sulfonyl radical support this dichotomy.
1,2-Radical Shifts in Photoinduced Synthetic Organic Transformations: A Guide to the Reactivity of Useful Radical Synthons
ACS Organic & Inorganic Au ( IF 0 ) Pub Date : 2022-08-15 , DOI: 10.1021/acsorginorgau.2c00032
The exploration of 1,2-radical shift (RS) mechanisms in photoinduced organic reactions has provided efficient routes for the generation of important radical synthons in many chemical transformations. In this Review, the basic concepts involved in the traditional 1,2-spin-center shift (SCS) mechanisms in recently reported studies are discussed. In addition, other useful 1,2-RSs are addressed, such as those proceeding through 1,2-group migrations in carbohydrate chemistry, via 1,2-boron shifts, and by the generation of α-amino radicals. The discussion begins with a general overview of the basic aspects of 1,2-RS mechanisms, followed by a demonstration of their applicability in photoinduced transformations. The sections that follow are organized according to the mechanisms operating in combination with the 1,2-radical migration event. This contribution is not a comprehensive review but rather aims to provide an understanding of the topic, focused on the more recent advances in the field, and establishes a definition for the nomenclature that has been used to describe such mechanisms.
Oxo-Replaced Polyoxometalates: There Is More than Oxygen
ACS Organic & Inorganic Au ( IF 0 ) Pub Date : 2022-09-20 , DOI: 10.1021/acsorginorgau.2c00014
The presence of oxo-ligands is one of the main required characteristics for polyoxometalates (POMs), although some oxygen ions in a metallic environment can be replaced by other nonmetals, while maintaining the POM structure. The replacement of oxo-ligands offers a valuable approach to tune the charge distribution and connected properties like reducibility and hydrolytic stability of POMs for the development of tailored compounds. By assessing the reported catalytic and biological applications and connecting them to POM structures, the present review provides a guideline for synthetic approaches and aims to stimulate further applications where the oxo-replaced compounds are superior to their oxo-analogues. Oxo-replacement in POMs deserves more attention as a valuable tool to form chemically activated precursors for the synthesis of novel structures or to upgrade established structures with extraordinary properties for challenging applications.
On the Redox Properties of the Dimers of Thiazol-2-ylidenes That Are Relevant for Radical Catalysis
ACS Organic & Inorganic Au ( IF 0 ) Pub Date : 2023-03-27 , DOI: 10.1021/acsorginorgau.3c00008
We report the isolation and study of dimers stemming from popular thiazol-2-ylidene organocatalysts. The model featuring 2,6-di(isopropyl)phenyl (Dipp) N-substituents was found to be a stronger reducing agent (Eox = −0.8 V vs SCE) than bis(thiazol-2-ylidenes) previously studied in the literature. In addition, a remarkable potential gap between the first and second oxidation of the dimer also allows for the isolation of the corresponding air-persistent radical cation. The latter is an unexpected efficient promoter of the radical transformation of α-bromoamides into oxindoles.
Applications of Vanadium, Niobium, and Tantalum Complexes in Organic and Inorganic Synthesis
ACS Organic & Inorganic Au ( IF 0 ) Pub Date : 2022-12-30 , DOI: 10.1021/acsorginorgau.2c00056
Organometallic catalysis is a powerful strategy in chemical synthesis, especially with the cheap and low toxic metals based on green chemistry principle. Thus, the selection of the metal is particularly important to plan relevant and applicable processes. The group VB metals have been the subject of exciting and significant advances in both organic and inorganic synthesis. In this Review, we have summarized some reports from recent decades, which are about the development of group VB metals utilized in various types of reactions, such as oxidation, reduction, alkylation, dealkylation, polymerization, aromatization, protein synthesis, and practical water splitting.
Substituent-Induced Control of fac/mer Isomerism in Azine-NHC Fe(II) Complexes
ACS Organic & Inorganic Au ( IF 0 ) Pub Date : 2022-09-28 , DOI: 10.1021/acsorginorgau.2c00038
The stereoselective synthesis of geometrical iron(II) complexes bearing azine-NHC ligands is described. Facial and meridional selectivity is achieved as a function of the steric demand of the azine unit, with no remarkable influence of the carbene nature. More specifically, meridional complexes are obtained upon selecting bulky 5-mesityl-substituted pyridyl coordinating units. Unexpectedly, increase of the steric hindrance in the α position with respect to the N coordinating atom results in an exclusive facial configuration, which is in stark contrast to the meridional selectivity induced by other reported α-substituted bidentate ligands. Investigation of the structure and the optical and electrochemical properties of the here-described complexes has revealed the non-negligible effect of the fac/mer ligand configuration around the metal center.
Data Checks in ACS Organic & Inorganic Au
ACS Organic & Inorganic Au ( IF 0 ) Pub Date : 2022-08-03 , DOI: 10.1021/acsorginorgau.2c00039
Data are shaping the future of humanity. We want the data published in and associated with ACS journals to be high-quality, robust, and, where it is ethically and legally feasible, accessible. We strongly endorse the FAIR Data Principles (1) and ACS Organic & Inorganic Au will be involved in spearheading ACS’ move to be a leader in data standards. ACS Organic & Inorganic Au encourages all researchers to submit data alongside their manuscripts. We encourage authors to submit free induction decay (FID) data alongside publications and include a note in published work to say when “FAIR” data is available. (2) We also encourage the deposition of data in open repositories. Authors may refer to re3data.org and FAIRsharing.org for information on available repositories, their certification status, and services offered. Last Fall, the ACS Research Data Policy was launched on the ACS Publishing Center to provide best practice recommendations for data citation, Data Availability Statements, and the use of appropriate data repositories. In addition, the ACS Publishing Center also features a section dedicated to ACS Research Data Guidelines. These guidelines are a living reference source to support researchers to include data as a prioritized publication component. Current guidelines include Biological data, Simulations, Machine Learning, Computational Data, and Organic chemistry data, and coming soon in 2022, Nanoscience, Materials science, and Energy. In March 2022, ACS Organic & Inorganic Au rolled out our new data check. This process is analogous to the process at our sister journals, The Journal of Organic Chemistry and Organic Letters. It ensures that the data presented in Articles, Letters, Reviews, and Perspectives are robust and reliable. In doing this, we are also keen to ensure that the organic chemistry community experience consistent processes across all our organic chemistry journals. A member of our Data Team will check the data in the manuscript, and feedback will be included in the decision letter. When the revised manuscript is submitted, the data team reviews the revision to ensure the data meets journal requirements prior to acceptance. This is the first important step that ACS Organic & Inorganic Au is taking to embrace data as a prioritized publication component. Do keep an eye out for future developments from the journal─we have some exciting data initiatives on the horizon! We hope our authors and readers share our passion for the future of open data and open science. This article references 2 other publications. This article has not yet been cited by other publications. This article references 2 other publications.
Roles of Metal Ions in Foldamers and Other Conformationally Flexible Supramolecular Systems
ACS Organic & Inorganic Au ( IF 0 ) Pub Date : 2022-08-22 , DOI: 10.1021/acsorginorgau.2c00021
Conformational control is a key prerequisite for much molecular function. As chemists seek to create complex molecules that have applications beyond the academic laboratory, correct spatial positioning is critical. This is particularly true of flexible systems. Conformationally flexible molecules show potential because they resemble in many cases naturally occurring analogues such as the secondary structures found in proteins and peptides such as α-helices and β-sheets. One of the ways in which conformation can be controlled in these molecules is through interaction with or coordination to metal ions. This review explores how secondary structure (i.e., controlled local conformation) in foldamers and other conformationally flexible systems can be enforced or modified through coordination to metal ions. We hope to provide examples that illustrate the power of metal ions to influence this structure toward multiple different outcomes.
Long-Range Kinetic Effects on the Alternating Ring Opening Metathesis of Bicyclo[4.2.0]oct-6-ene-7-carboxamides and Cyclohexene
ACS Organic & Inorganic Au ( IF 0 ) Pub Date : 2023-05-30 , DOI: 10.1021/acsorginorgau.3c00013
We report an investigation of rates of ruthenium-catalyzed alternating ring opening metathesis (AROM) of cyclohexene with two different Ru-cyclohexylidene carbenes derived from bicyclo[4.2.0]oct-6-ene-7-carboxamides (A monomer) that bear different side chains. These monomers are propylbicyclo[4.2.0]oct-6-ene-7-carboxamide and N-(2-(2-ethoxyethoxy)ethanylbicyclo[4.2.0]oct-6-ene-7-carboxamide. The amide substitution of these monomers directly affects both the rate of the bicyclo[4.2.0]oct-6-ene-7-carboxamide ring opening and the rate of reaction of the resulting carbene with cyclohexene (B monomer). The resulting Ru-cyclohexylidenes underwent reversible ring opening metathesis with cyclohexene. However, the thermodynamic equilibrium disfavored cyclohexene ring opening. Utilization of triphenylphosphine forms a more stable PPh3 ligated complex, which suppresses the reverse ring closing reaction and allowed direct measurements of the forward rate constants for formation of various A-B and A-B-A′ complexes through carbene-catalyzed ring-opening metathesis and thus gradient polymer structure-determining steps. The relative rate of the propylbicyclo[4.2.0]oct-6-ene-7-carboxamide ring opening is 3-fold faster than that of the N-(2-(2-ethoxyethoxy)ethanylbicyclo[4.2.0]oct-6-ene-7-carboxamide. In addition, the rate of cyclohexene ring-opening catalyzed by the propyl bicyclooctene is 1.4 times faster than when catalyzed by the ethoxyethoxy bicyclooctene. Also, the subsequent rates of bicyclo[4.2.0]oct-6-ene-7-carboxamide ring opening by propyl-based Ru-hexylidene are 1.6-fold faster than ethoxyethoxy-based Ru-hexylidene. Incorporation of the rate constants into reactivity ratios of bicyclo[4.2.0]amide-cyclohexene provides prediction of copolymerization kinetics and gradient copolymer structures.
Visible-Light-Mediated (sp3)Cα–H Functionalization of Ethers Enabled by Electron Donor–Acceptor Complex
ACS Organic & Inorganic Au ( IF 0 ) Pub Date : 2022-03-29 , DOI: 10.1021/acsorginorgau.2c00008
A synthetically beneficial visible-light-mediated protocol has been disclosed to achieve C–H amination of readily available feedstocks cyclic and acyclic ethers. A rarely identified N-bromosuccinamide–tetrahydrofuran electron donor–acceptor complex served as an initiator to functionalize both α-diazoketones and dialkyl azodicarboxylates. This developed methodology gives an alternative and milder way to construct the C–N bond and can be explored for the formation of C–C bond to perform arylation and allylation reactions.
Impact of Bidentate Pyridyl-Mesoionic Carbene Ligands: Structural, (Spectro)Electrochemical, Photophysical, and Theoretical Investigations on Ruthenium(II) Complexes
ACS Organic & Inorganic Au ( IF 0 ) Pub Date : 2023-05-03 , DOI: 10.1021/acsorginorgau.3c00005
We present here new synthetic strategies for the isolation of a series of Ru(II) complexes with pyridyl-mesoionic carbene ligands (MIC) of the 1,2,3-triazole-5-ylidene type, in which the bpy ligands (bpy = 2,2′-bipyridine) of the archetypical [Ru(bpy)3]2+ have been successively replaced by one, two, or three pyridyl-MIC ligands. Three new complexes have been isolated and investigated via NMR spectroscopy and single-crystal X-ray diffraction analysis. The incorporation of one MIC unit shifts the potential of the metal-centered oxidation about 160 mV to more cathodic potential in cyclic voltammetry, demonstrating the extraordinary σ-donor ability of the pyridyl-MIC ligand, while the π-acceptor capacities are dominated by the bpy ligand, as indicated by electron paramagnetic resonance spectroelectrochemistry (EPR-SEC). The replacement of all bpy ligands by the pyridyl-MIC ligand results in an anoidic shift of the ligand-centered reduction by 390 mV compared to the well-established [Ru(bpy)3]2+ complex. In addition, UV/vis/NIR-SEC in combination with theoretical calculations provided detailed insights into the electronic structures of the respective redox states, taking into account the total number of pyridyl-MIC ligands incorporated in the Ru(II) complexes. The luminescence quantum yield and lifetimes were determined by time-resolved absorption and emission spectroscopy. An estimation of the excited state redox potentials conclusively showed that the pyridyl-MIC ligand can tune the photoredox activity of the isolated complexes to stronger photoreductants. These observations can provide new strategies for the design of photocatalysts and photosensitizers based on MICs.
Selective Oxidation of Methane to Methanol via In Situ H2O2 Synthesis
ACS Organic & Inorganic Au ( IF 0 ) Pub Date : 2023-04-20 , DOI: 10.1021/acsorginorgau.3c00001
The selective oxidation of methane to methanol, using H2O2 generated in situ from the elements, has been investigated using a series of ZSM-5-supported AuPd catalysts of varying elemental composition, prepared via a deposition precipitation protocol. The alloying of Pd with Au was found to offer significantly improved efficacy, compared to that observed over monometallic analogues. Complementary studies into catalytic performance toward the direct synthesis and subsequent degradation of H2O2, under idealized conditions, indicate that methane oxidation efficacy is not directly related to H2O2 production rates, and it is considered that the known ability of Au to promote the release of reactive oxygen species is the underlying cause for the improved performance of the bimetallic catalysts.
Chemical and Physical Properties of YHg3 and LuHg3
ACS Organic & Inorganic Au ( IF 0 ) Pub Date : 2023-02-02 , DOI: 10.1021/acsorginorgau.2c00048
Amalgams have played an important role in fundamental and applied solid-state chemistry and physics because of the diversity of crystallographic features and properties that they have to offer. Moreover, their peculiar chemical properties can sometimes give rise to unconventional superconducting or magnetic ground states. In the current work, we present an in-depth analysis of single crystals of YHg3 and LuHg3 (Mg3Cd structure type, space group P63/mmc). Both compounds show superconductivity below Tc = 1 ± 0.1 K (YHg3) and Tc = 1.2 ± 0.1 K (LuHg3). Given the high air-sensitivity and toxicity of these compounds, this study was only possible using a number of dedicated experimental techniques.
中科院SCI期刊分区
大类学科小类学科TOP综述
补充信息
自引率H-indexSCI收录状况PubMed Central (PML)
0
投稿指南
期刊投稿网址
收稿范围
收录载体
微信二维码
  • 微信公众号二维码
  • 关注官方微信公众号
  • 微信二维码
  • 微信扫码联系客服
平台客服