960化工网/ 文献
期刊名称:Annual Review of Physical Chemistry
期刊ISSN:0066-426X
期刊官方网站:http://www.annualreviews.org/journal/physchem
出版商:Annual Reviews Inc.
出版周期:Annual
影响因子:12.703
始发年份:1950
年文章数:22
是否OA:否
Gas-Phase Computational Spectroscopy: The Challenge of the Molecular Bricks of Life
Annual Review of Physical Chemistry ( IF 12.703 ) Pub Date : 2022-11-22 , DOI: 10.1146/annurev-physchem-082720-103845
Gas-phase molecular spectroscopy is a natural playground for accurate quantum-chemical computations. However, the molecular bricks of life (e.g., DNA bases or amino acids) are challenging systems because of the unfavorable scaling of quantum-chemical models with the molecular size (active electrons) and/or the presence of large-amplitude internal motions. From the theoretical point of view, both aspects prevent the brute-force use of very accurate but very expensive state-of-the-art quantum-chemical methodologies. From the experimental point of view, both features lead to congested gas-phase spectra, whose assignment and interpretation are not at all straightforward. Based on these premises, this review focuses on the current status and perspectives of the fully a priori prediction of the spectral signatures of medium-sized molecules (containing up to two dozen atoms) in the gas phase with special reference to rotational and vibrational spectroscopies of some representative molecular bricks of life.
Quantum Dynamics of Exciton Transport and Dissociation in Multichromophoric Systems
Annual Review of Physical Chemistry ( IF 12.703 ) Pub Date : 2021-04-20 , DOI: 10.1146/annurev-physchem-090419-040306
Due to the subtle interplay of site-to-site electronic couplings, exciton delocalization, nonadiabatic effects, and vibronic couplings, quantum dynamical studies are needed to elucidate the details of ultrafast photoinduced energy and charge transfer events in organic multichromophoric systems. In this vein, we review an approach that combines first-principles parameterized lattice Hamiltonians with accurate quantum dynamical simulations using advanced multiconfigurational methods. Focusing on the elementary transfer steps in organic functional materials, we address coherent exciton migration and creation of charge transfer excitons in homopolymers, notably representative of the poly(3-hexylthiophene) material, as well as exciton dissociation at polymer:fullerene heterojunctions. We emphasize the role of coherent transfer, trapping effects due to high-frequency phonon modes, and thermal activation due to low-frequency soft modes that drive a diffusive dynamics.
Quantitative Mass Spectrometry Imaging of Biological Systems
Annual Review of Physical Chemistry ( IF 12.703 ) Pub Date : 2021-04-20 , DOI: 10.1146/annurev-physchem-061020-053416
Mass spectrometry imaging (MSI) is a powerful, label-free technique that provides detailed maps of hundreds of molecules in complex samples with high sensitivity and subcellular spatial resolution. Accurate quantification in MSI relies on a detailed understanding of matrix effects associated with the ionization process along with evaluation of the extraction efficiency and mass-dependent ion losses occurring in the analysis step. We present a critical summary of approaches developed for quantitative MSI of metabolites, lipids, and proteins in biological tissues and discuss their current and future applications.
Modeling Anharmonic Effects in the Vibrational Spectra of High-Frequency Modes
Annual Review of Physical Chemistry ( IF 12.703 ) Pub Date : 2023-01-25 , DOI: 10.1146/annurev-physchem-062422-021306
High-resolution vibrational spectra of C–H, O–H, and N–H stretches depend on both molecular conformation and environment as well as provide a window into the frequencies of many other vibrational degrees of freedom as a result of mode mixing. We review current theoretical strategies that are being deployed to both aid and guide the analysis of the data that are encoded in these spectra. The goal is to enhance the power of vibrational spectroscopy as a tool for probing conformational preferences, hydrogen bonding effects away from equilibrium, and energy flow pathways. Recent years have seen an explosion of new methods and strategies for solving the nuclear Schrödinger equation. Rather than attempt a comprehensive review, this work highlights specific molecular systems that we have chosen as representing bonding motifs that are important to chemistry and biology. We focus on the choices theoretical chemists make regarding the level of electronic structure theory, the representation of the potential energy surface, the selection of coordinates, preferences in basis sets, and methods of solution.
Modeling Excited States of Molecular Organic Aggregates for Optoelectronics
Annual Review of Physical Chemistry ( IF 12.703 ) Pub Date : 2023-02-16 , DOI: 10.1146/annurev-physchem-102822-100945
Light-driven phenomena in organic molecular aggregates underpin several mechanisms relevant to optoelectronic applications. Modeling these processes is essential for aiding the design of new materials and optimizing optoelectronic devices. In this review, we cover the use of different atomistic models, excited-state dynamics, and transport approaches for understanding light-activated phenomena in molecular aggregates, including radiative and nonradiative decay pathways. We consider both intra- and intermolecular mechanisms and focus on the role of conical intersections as facilitators of internal conversion. We explore the use of the exciton models for Frenkel and charge transfer states and the electronic structure methods and algorithms commonly applied for excited-state dynamics. Throughout the review, we analyze the approximations employed for the simulation of internal conversion, intersystem crossing, and reverse intersystem crossing rates and analyze the molecular processes behind single fission, triplet-triplet annihilation, Dexter energy transfer, and Förster energy transfer.
Laser-Induced Coulomb Explosion Imaging of Aligned Molecules and Molecular Dimers
Annual Review of Physical Chemistry ( IF 12.703 ) Pub Date : 2022-01-26 , DOI: 10.1146/annurev-physchem-090419-053627
We discuss how Coulomb explosion imaging (CEI), triggered by intense femtosecond laser pulses and combined with laser-induced alignment and covariance analysis of the angular distributions of the recoiling fragment ions, provides new opportunities for imaging the structures of molecules and molecular complexes. First, focusing on gas phase molecules, we show how the periodic torsional motion of halogenated biphenyl molecules can be measured in real time by timed CEI, and how CEI of one-dimensionally aligned difluoroiodobenzene molecules can uniquely identify four structural isomers. Next, focusing on molecular complexes formed inside He nano-droplets, we show that the conformations of noncovalently bound dimers or trimers, aligned in one or three dimensions, can be determined by CEI. Results presented for homodimers of CS2, OCS, and bromobenzene pave the way for femtosecond time-resolved structure imaging of molecules undergoing bimolecular interactions and ultimately chemical reactions.
In Situ Measurement of Evolving Excited-State Dynamics During Deposition and Processing of Organic Films by Single-Shot Transient Absorption
Annual Review of Physical Chemistry ( IF 12.703 ) Pub Date : 2023-02-28 , DOI: 10.1146/annurev-physchem-102722-041313
A significant advantage of organic semiconductors over many of their inorganic counterparts is solution processability. However, solution processing commonly yields heterogeneous films with properties that are highly sensitive to the conditions and parameters of casting and processing. Measuring the key properties of these materials in situ, during film production, can provide new insight into the mechanism of these processing steps and how they lead to the emergence of the final organic film properties. The excited-state dynamics is often of import in photovoltaic, electronic, and light-emitting devices. This review focuses on single-shot transient absorption, which measures a transient spectrum in a single shot, enabling the rapid measurement of unstable chemical systems such as organic films during their casting and processing. We review the principles of instrument design and provide examples of the utility of this spectroscopy for measuring organic films during their production.
Dry Deposition of Atmospheric Aerosols: Approaches, Observations, and Mechanisms
Annual Review of Physical Chemistry ( IF 12.703 ) Pub Date : 2021-04-20 , DOI: 10.1146/annurev-physchem-090519-034936
Aerosols are liquid or solid particles suspended in the atmosphere, typically with diameters on the order of nanometers to microns. These particles impact air quality and the radiative balance of the planet. Dry deposition is a key process for the removal of aerosols from the atmosphere and plays an important role in controlling the lifetime of atmospheric aerosols. Dry deposition is driven by turbulence and shows a strong dependence on particle size. This review summarizes the mechanisms behind aerosol dry deposition, including measurement approaches, field observations, and modeling studies. We identify several gaps in the literature, including deposition over the cryosphere (i.e., snow and ice surfaces) and the ocean; in addition, we highlight new techniques to measure black carbon fluxes. While recent advances in aerosol instrumentation have enhanced our understanding of aerosol sources and chemistry, dry deposition and other loss processes remain poorly investigated.
Control of Chemical Reaction Pathways by Light–Matter Coupling
Annual Review of Physical Chemistry ( IF 12.703 ) Pub Date : 2021-04-20 , DOI: 10.1146/annurev-physchem-090519-045502
Because plasmonic metal nanostructures combine strong light absorption with catalytically active surfaces, they have become platforms for the light-assisted catalysis of chemical reactions. The enhancement of reaction rates by plasmonic excitation has been extensively discussed. This review focuses on a less discussed aspect: the induction of new reaction pathways by light excitation. Through commentary on seminal reports, we describe the principles behind the optical modulation of chemical reactivity and selectivity on plasmonic metal nanostructures. Central to these phenomena are excited charge carriers generated by plasmonic excitation, which modify the energy landscape available to surface reactive species and unlock pathways not conventionally available in thermal catalysis. Photogenerated carriers can trigger bond dissociation or desorption in an adsorbate-selective manner, drive charge transfer and multielectron redox reactions, and generate radical intermediates. Through one or more of these mechanisms, a specific pathway becomes favored under light. By improved control over these mechanisms, light-assisted catalysis can be transformational for chemical synthesis and energy conversion.
The Predictive Power of Exact Constraints and Appropriate Norms in Density Functional Theory
Annual Review of Physical Chemistry ( IF 12.703 ) Pub Date : 2023-01-25 , DOI: 10.1146/annurev-physchem-062422-013259
Ground-state Kohn-Sham density functional theory provides, in principle, the exact ground-state energy and electronic spin densities of real interacting electrons in a static external potential. In practice, the exact density functional for the exchange-correlation (xc) energy must be approximated in a computationally efficient way. About 20 mathematical properties of the exact xc functional are known. In this work, we review and discuss these known constraints on the xc energy and hole. By analyzing a sequence of increasingly sophisticated density functional approximations (DFAs), we argue that ( a) the satisfaction of more exact constraints and appropriate norms makes a functional more predictive over the immense space of many-electron systems and ( b) fitting to bonded systems yields an interpolative DFA that may not extrapolate well to systems unlike those in the fitting set. We discuss both how the class of well-described systems has grown along with constraint satisfaction and the possibilities for future functional development.
The Optical Signatures of Stochastic Processes in Many-Body Exciton Scattering
Annual Review of Physical Chemistry ( IF 12.703 ) Pub Date : 2023-02-28 , DOI: 10.1146/annurev-physchem-102822-100922
We review our recent quantum stochastic model for spectroscopic lineshapes in the presence of a coevolving and nonstationary background population of excitations. Starting from a field theory description for interacting bosonic excitons, we derive a reduced model whereby optical excitons are coupled to an incoherent background via scattering as mediated by their screened Coulomb coupling. The Heisenberg equations of motion for the optical excitons are then driven by an auxiliary stochastic population variable, which we take to be the solution of an Ornstein–Uhlenbeck process. Here, we present an overview of the theoretical techniques we have developed as applied to predicting coherent nonlinear spectroscopic signals. We show how direct (Coulomb) and exchange coupling to the bath give rise to distinct spectral signatures and discuss mathematical limits on inverting spectral signatures to extract the background density of states.
3D Super-Resolution Fluorescence Imaging of Microgels
Annual Review of Physical Chemistry ( IF 12.703 ) Pub Date : 2023-02-08 , DOI: 10.1146/annurev-physchem-062422-022601
Super-resolution fluorescence microscopy techniques are powerful tools to investigate polymer systems. In this review, we address how these techniques have been applied to hydrogel nano- and microparticles, so-called nano- or microgels. We outline which research questions on microgels could be addressed and what new insights could be achieved. Studies of the morphology, shape, and deformation of microgels; their internal compartmentalization; the cross-linker distribution and polarity inside them; and their dynamics and diffusion are summarized. In particular, the abilities to super-resolve structures in three dimensions have boosted the research field and have also allowed researchers to obtain impressive 3D images of deformed microgels. Accessing information beyond 3D localization, such as spectral and lifetime properties and correlative imaging or the combination of data with other methods, shines new light onto polymer systems and helps us understand their complexity in detail. Such future trends and developments are also addressed.
Ultrafast Imaging of Molecules with Electron Diffraction
Annual Review of Physical Chemistry ( IF 12.703 ) Pub Date : 2022-04-20 , DOI: 10.1146/annurev-physchem-082720-010539
Photoexcited molecules convert light into chemical and mechanical energy through changes in electronic and nuclear structure that take place on femtosecond timescales. Gas phase ultrafast electron diffraction (GUED) is an ideal tool to probe the nuclear geometry evolution of the molecules and complements spectroscopic methods that are mostly sensitive to the electronic state. GUED is a weak and passive probing tool that does not alter the molecular properties during the probing process and is sensitive to the spatial distribution of charge in the molecule, including both electrons and nuclei. Improvements in temporal resolution have enabled GUED to capture coherent nuclear motions in molecules in the excited and ground electronic states with femtosecond and subangstrom resolution. Here we present the basic theory of GUED and explain what information is encoded in the diffraction signal, review how GUED has been used to observe coherent structural dynamics in recent experiments, and discuss the advantages and limitations of the method.
Classical and Nonclassical Nucleation and Growth Mechanisms for Nanoparticle Formation
Annual Review of Physical Chemistry ( IF 12.703 ) Pub Date : 2022-02-03 , DOI: 10.1146/annurev-physchem-082720-100947
All solid materials are created via nucleation. In this evolutionary process, nuclei form in solution or at interfaces, expand by monomeric growth and oriented attachment, and undergo phase transformation. Nucleation determines the location and size of nuclei, whereas growth controls the size, shape, and aggregation of newly formed nanoparticles. These physical properties of nanoparticles can affect their functionalities, reactivities, and porosities, as well as their fate and transport. Recent advances in nanoscale analytical technologies allow in situ real-time observations, enabling us to uncover the molecular nature of nuclei and the critical controlling factors for nucleation and growth. Although a single theory cannot yet fully explain such evolving processes, we have started to better understand how both classical andnonclassical theories can work together, and we have begun to recognize the importance of connecting these theories. This review discusses the recent convergence of knowledge about the nucleation and growth of nanoparticles.
eScience Infrastructures in Physical Chemistry
Annual Review of Physical Chemistry ( IF 12.703 ) Pub Date : 2022-04-20 , DOI: 10.1146/annurev-physchem-082120-041521
As the volume of data associated with scientific research has exploded over recent years, the use of digital infrastructures to support this research and the data underpinning it has increased significantly. Physical chemists have been making use of eScience infrastructures since their conception, but in the last five years their usage has increased even more. While these infrastructures have not greatly affected the chemistry itself, they have in some cases had a significant impact on how the research is undertaken. The combination of the human effort of collaboration to create open source software tools and semantic resources, the increased availability of hardware for the laboratories, and the range of data management tools available has made the life of a physical chemist significantly easier. This review considers the different aspects of eScience infrastructures and explores how they have improved the way in which we can conduct physical chemistry research.
Understanding and Controlling Intersystem Crossing in Molecules
Annual Review of Physical Chemistry ( IF 12.703 ) Pub Date : 2021-04-20 , DOI: 10.1146/annurev-physchem-061020-053433
This review article focuses on the understanding of intersystem crossing (ISC) in molecules. It addresses readers who are interested in the phenomenon of intercombination transitions between states of different electron spin multiplicities but are not familiar with relativistic quantum chemistry. Among the spin-dependent interaction terms that enable a crossover between states of different electron spin multiplicities, spin–orbit coupling (SOC) is by far the most important. If SOC is small or vanishes by symmetry, ISC can proceed by electronic spin–spin coupling (SSC) or hyperfine interaction (HFI). Although this review discusses SSC- and HFI-based ISC, the emphasis is on SOC-based ISC. In addition to laying the theoretical foundations for the understanding of ISC, the review elaborates on the qualitative rules for estimating transition probabilities. Research on the mechanisms of ISC has experienced a major revival in recent years owing to its importance in organic light-emitting diodes (OLEDs). Exemplified by challenging case studies, chemical substitution and solvent environment effects are discussed with the aim of helping the reader to understand and thereby get a handle on the factors that steer the efficiency of ISC.
Vibrational Sum-Frequency Generation Hyperspectral Microscopy for Molecular Self-Assembled Systems
Annual Review of Physical Chemistry ( IF 12.703 ) Pub Date : 2021-04-20 , DOI: 10.1146/annurev-physchem-090519-050510
In this review, we discuss the recent developments and applications of vibrational sum-frequency generation (VSFG) microscopy. This hyperspectral imaging technique can resolve systems without inversion symmetry, such as surfaces, interfaces and noncentrosymmetric self-assembled materials, in the spatial, temporal, and spectral domains. We discuss two common VSFG microscopy geometries: wide-field and confocal point-scanning. We then introduce the principle of VSFG and the relationships between hyperspectral imaging with traditional spectroscopy, microscopy, and time-resolved measurements. We further highlight crucial applications of VSFG microscopy in self-assembled monolayers, cellulose in plants, collagen fibers, and lattice self-assembled biomimetic materials. In these systems, VSFG microscopy reveals relationships between physical properties that would otherwise be hidden without being spectrally, spatially, and temporally resolved. Lastly, we discuss the recent development of ultrafast transient VSFG microscopy, which can spatially measure the ultrafast vibrational dynamics of self-assembled materials. The review ends with an outlook on the technical challenges of and scientific potential for VSFG microscopy.
Protein Structure Prediction with Mass Spectrometry Data
Annual Review of Physical Chemistry ( IF 12.703 ) Pub Date : 2022-04-20 , DOI: 10.1146/annurev-physchem-082720-123928
Knowledge of protein structure is crucial to our understanding of biological function and is routinely used in drug discovery. High-resolution techniques to determine the three-dimensional atomic coordinates of proteins are available. However, such methods are frequently limited by experimental challenges such as sample quantity, target size, and efficiency. Structural mass spectrometry (MS) is a technique in which structural features of proteins are elucidated quickly and relatively easily. Computational techniques that convert sparse MS data into protein models that demonstrate agreement with the data are needed. This review features cutting-edge computational methods that predict protein structure from MS data such as chemical cross-linking, hydrogen–deuterium exchange, hydroxyl radical protein footprinting, limited proteolysis, ion mobility, and surface-induced dissociation. Additionally, we address future directions for protein structure prediction with sparse MS data.
Spectroscopy and Scattering Studies Using Interpolated Ab Initio Potentials
Annual Review of Physical Chemistry ( IF 12.703 ) Pub Date : 2021-04-20 , DOI: 10.1146/annurev-physchem-090519-051837
The Born–Oppenheimer potential energy surface (PES) has come a long way since its introduction in the 1920s, both conceptually and in predictive power for practical applications. Nevertheless, nearly 100 years later—despite astonishing advances in computational power—the state-of-the-art first-principles prediction of observables related to spectroscopy and scattering dynamics is surprisingly limited. For example, the water dimer, (H2O)2, with only six nuclei and 20 electrons, still presents a formidable challenge for full-dimensional variational calculations of bound states and is considered out of reach for rigorous scattering calculations. The extremely poor scaling of the most rigorous quantum methods is fundamental; however, recent progress in development of approximate methodologies has opened the door to fairly routine high-quality predictions, unthinkable 20 years ago. In this review, in relation to the workflow of spectroscopy and/or scattering studies, we summarize progress and challenges in the component areas of electronic structure calculations, PES fitting, and quantum dynamical calculations.
Spectroscopic Studies of Clusters of Atmospheric Relevance
Annual Review of Physical Chemistry ( IF 12.703 ) Pub Date : 2023-01-25 , DOI: 10.1146/annurev-physchem-062322-041503
Atmospheric aerosols exert a significant but highly uncertain effect on the global climate, and roughly half of these particles originate as small clusters formed by collisions between atmospheric trace vapors. These particles typically consist of acids, bases, and water, stabilized by salt bridge formation and a network of strong hydrogen bonds. We review spectroscopic studies of this process, focusing on the clusters likely to be involved in the first steps of particle formation and the intermolecular interactions governing their stability. These studies typically focus on determining structure and stability and have shown that acid-base chemistry in the cluster may violate chemical intuition derived from solution-phase behavior and that hydration of these clusters is likely to be complex to describe. We also suggest fruitful areas for extension of these studies and alternative spectroscopic techniques that have not yet been applied to this problem.
中科院SCI期刊分区
大类学科小类学科TOP综述
化学1区CHEMISTRY, PHYSICAL 物理化学2区
补充信息
自引率H-indexSCI收录状况PubMed Central (PML)
0.30140Science Citation Index Science Citation Index Expanded
投稿指南
期刊投稿网址
收稿范围
收录载体
微信二维码
  • 微信公众号二维码
  • 关注官方微信公众号
  • 微信二维码
  • 微信扫码联系客服
平台客服