960化工网/ 文献
期刊名称:Bioinorganic Chemistry and Applications
期刊ISSN:1565-3633
期刊官方网站:http://www.hindawi.com/journals/bca/
出版商:Hindawi Publishing Corporation
出版周期:Quarterly
影响因子:4.724
始发年份:2003
年文章数:44
是否OA:否
Biomolecule Protective and Photocatalytic Potential of Cellulose Supported MoS2/GO Nanocomposite
Bioinorganic Chemistry and Applications ( IF 4.724 ) Pub Date : 2023-03-09 , DOI: 10.1155/2023/3634726
In the current study, cellulose/MoS2/GO nanocomposite has been synthesized by a hydrothermal method. Reports published regarding efficiency of Mo and graphene oxide-based nanocomposites for environmental remediation motivated to synthesize cellulose supported MoS2/GO nanocomposite. Formation of nanocomposite was initially confirmed by UV-visible and FTIR spectroscopic techniques. Particle size and morphology of the nanocomposite were assessed by scanning electron microscopy (SEM), and it was found having particle size ranging from 50 to 80 nm and heterogeneous structure. The XRD analysis also confirmed the structure of the nanocomposite having cellulose, MoS2, and GO. The synthesized nanocomposite was further tested for biomolecule protective potential employing different radical scavenging assays. Results of radical DPPH● (50%) and ABTS●+ (51%) scavenging studies indicate that nanocomposites can be used as a biomolecule protective agent. In addition, nanocomposite was also evaluated for photocatalytic potential, and the results showed excellent photocatalytic properties for the degradation of 4-nitrophenol up to 75% and methylene blue and methyl orange up to 85% and 70%, respectively. So, this study confirmed that cellulose supported/stabilized MoS2/GO nanocomposite can be synthesized by an ecofriendly, cost-effective, and easy hydrothermal method having promising biomolecule protective and photocatalytic potential.
Hybrid MWCNT and TiO2 Nanoparticle-Suspended Waste Tyre Oil Biodiesel for CI Engines
Bioinorganic Chemistry and Applications ( IF 4.724 ) Pub Date : 2023-02-03 , DOI: 10.1155/2023/8626155
Nowadays, scarcity arises in almost all our basic needs, including water, fuel, and food. Recycling used and scrapped things for a valuable commodity is highly appreciable for compensating for the globally fast-growing demand. This paper aims to investigate waste tyre oil for preparing biodiesel for CI engines by enhancing their performance with hybrid nanoparticles for preparing nanofuel and hybrid nanofuel. The nanoparticles (30–40 nm) of MWCNT and TiO2 were utilized to prepare nanofuels with nanoparticle concentrations of MWCNT (300 ppm) and TiO2 (300 ppm), respectively. In the case of hybrid nanofuel, the nanoparticle concentration of MWCNT (150 ppm) and TiO2 (150 ppm) was preferred. The performance of the proposed nanofuel and hybrid nanofuel with pure diesel was evaluated. The proposed fuel performance outperforms the combustion performance, has higher engine efficiency, and has fewer emissions. The best performances were noticed in hybrid nanofuel that has 32% higher brake thermal efficiency than diesel and 24% and 4% lower BSFC and peak pressure than diesel, respectively. The emission performance is also 29%, 50%, and 13% lower in CO, HC, and CO2 emissions than that in pure diesel.
Bioinorganic Nanoparticles for the Remediation of Environmental Pollution: Critical Appraisal and Potential Avenues
Bioinorganic Chemistry and Applications ( IF 4.724 ) Pub Date : 2023-04-10 , DOI: 10.1155/2023/2409642
Nowadays, environmental pollution has become a critical issue for both developed and developing countries. Because of excessive industrialization, burning of fossil fuels, mining and exploration, extensive agricultural activities, and plastics, the environment is being contaminated rapidly through soil, air, and water. There are a variety of approaches for treating environmental toxins, but each has its own set of restrictions. As a result, various therapies are accessible, and approaches that are effective, long-lasting, less harmful, and have a superior outcome are extensively demanded. Modern research advances focus more on polymer-based nanoparticles, which are frequently used in drug design, drug delivery systems, environmental remediation, power storage, transformations, and other fields. Bioinorganic nanomaterials could be a better candidate to control contaminants in the environment. In this article, we focused on their synthesis, characterization, photocatalytic process, and contributions to environmental remediation against numerous ecological hazards. In this review article, we also tried to explore their recent advancements and futuristic contributions to control and prevent various pollutants in the environment.
Green Approaches, Potentials, and Applications of Zinc Oxide Nanoparticles in Surface Coatings and Films
Bioinorganic Chemistry and Applications ( IF 4.724 ) Pub Date : 2022-08-04 , DOI: 10.1155/2022/3077747
Interest in the use of zinc oxide nanoparticles (ZnO NPs) in surface coatings and films has increased as its incorporation can significantly improve the mechanical and antimicrobial properties of coatings and film solutions. In an effort to produce green or eco-friendly products, the potential use of ZnO NPs biosynthesized from natural resources to replace conventional petroleum-derived polymers has been investigated. This review provides an insight into the growing trend of incorporating ZnO NPs into synthetic or semi-synthetic or bio-based polymeric materials via different synthesis methods as well as its characteristics and potential applications in surface coatings and films. The antimicrobial potential of ZnO NPs to inhibit the growth of various types of microorganisms as well as its use in surface coatings or films to impart antimicrobial activities that prevent the spread of microorganisms, especially the COVID-19 virus, was also discussed.
Targeting Tumor Microenvironment by Metal Peroxide Nanoparticles in Cancer Therapy
Bioinorganic Chemistry and Applications ( IF 4.724 ) Pub Date : 2022-12-16 , DOI: 10.1155/2022/5041399
Solid tumors have a unique tumor microenvironment (TME), which includes hypoxia, low acidity, and high hydrogen peroxide and glutathione (GSH) levels, among others. These unique factors, which offer favourable microenvironments and nourishment for tumor development and spread, also serve as a gateway for specific and successful cancer therapies. A good example is metal peroxide structures which have been synthesized and utilized to enhance oxygen supply and they have shown great promise in the alleviation of hypoxia. In a hypoxic environment, certain oxygen-dependent treatments such as photodynamic therapy and radiotherapy fail to respond and therefore modulating the hypoxic tumor microenvironment has been found to enhance the antitumor impact of certain drugs. Under acidic environments, the hydrogen peroxide produced by the reaction of metal peroxides with water not only induces oxidative stress but also produces additional oxygen. This is achieved since hydrogen peroxide acts as a reactive substrate for molecules such as catalyse enzymes, alleviating tumor hypoxia observed in the tumor microenvironment. Metal ions released in the process can also offer distinct bioactivity in their own right. Metal peroxides used in anticancer therapy are a rapidly evolving field, and there is good evidence that they are a good option for regulating the tumor microenvironment in cancer therapy. In this regard, the synthesis and mechanisms behind the successful application of metal peroxides to specifically target the tumor microenvironment are highlighted in this review. Various characteristics of TME such as angiogenesis, inflammation, hypoxia, acidity levels, and metal ion homeostasis are addressed in this regard, together with certain forms of synergistic combination treatments.
Deferiprone−Resveratrol Hybrid, an Iron-Chelating Compound, Acts as an Antimalarial and Hepatoprotective Agent in Plasmodium berghei-Infected Mice
Bioinorganic Chemistry and Applications ( IF 4.724 ) Pub Date : 2022-11-24 , DOI: 10.1155/2022/3869337
Free heme in plasma acts as a prooxidant; thus, it is bound to hemopexin and eliminated by the liver. High iron content in the liver can support Plasmodium growth and cause oxidative liver injury. Inversely, the withholding of excessive iron can inhibit this growth and protect the liver against malaria infection. This study examined the effects of a deferiprone-resveratrol (DFP-RVT) hybrid on malaria parasites and its relevant hepatoprotective properties. Mice were infected with P. berghei, gavage DFP-RVT, deferiprone (DFP), and pyrimethamine (PYR) for 8 consecutive days. Blood and liver parameters were then evaluated. The presence of blood-stage parasites was determined using the microscopic Giemsa staining method. Subsequently, plasma liver enzymes, heme, and concentrations of thiobarbituric acid-reactive substances (TBARS) were determined. The liver tissue was examined pathologically and heme and TBARS concentrations were then quantified. The results indicate that the suppression potency against P. berghei growth occurred as follows: PYR > DFP-RVT hybrid > DFP. Importantly, DFP-RVT significantly improved RBC size, restored alanine aminotransferase and alkaline activities, and increased heme and TBARS concentrations. The compound also reduced the liver weight index, heme, and TBARS concentrations significantly when compared to mice that were untreated. Our findings support the contention that the hepatoprotective effect of DFP-RVT is associated with parasite burden, iron depletion, and lipid peroxidation in the host.
Fungal- and Algal-Derived Synthesis of Various Nanoparticles and Their Applications
Bioinorganic Chemistry and Applications ( IF 4.724 ) Pub Date : 2022-09-26 , DOI: 10.1155/2022/3142674
Nanoparticles synthesis through biological mediated methods with a particular focus on the processes mediated by fungi and algae is discussed, which systematically reviews nanoparticle characterization, composition, synthesis methods, and, lastly but not least, the applications of NPs across five different categories to provide a reference for future research. Most traditional methods to generate nanoparticles have certain limitations, like the toxicity of precursor materials, the need for high-temperature management, and the high cost of synthesis, which ultimately hinders their utility in sectors. Greener synthesis through fungus and algae done through bioreduction by biomolecules or enzymes present in them is low-energy, low-cost, and needs a low-temperature environment, providing a unique technique for the manufacture of various metallic nanoparticles utilized in an array of industries and healthcare.
Discovery of New Ligand with Quinoline Scaffold as Potent Allosteric Inhibitor of HIV-1 and Its Copper Complexes as a Powerful Catalyst for the Synthesis of Chiral Benzimidazole Derivatives, and in Silico Anti-HIV-1 Studies
Bioinorganic Chemistry and Applications ( IF 4.724 ) Pub Date : 2023-04-21 , DOI: 10.1155/2023/2881582
In this paper, the novel Schiff base ligand containing quinoline moiety and its novel copper chelate complexes were successfully prepared. The catalytic activity of the final complex in the organic reaction such as synthesis of chiral benzimidazoles and anti-HIV-1 activity of Schiff base ligand and the products of this reaction were investigated. In addition, green chemistry reactions using microwaves, powerful catalyst synthesis, green recovery and reusability, and separation of products with economic, safe, and clean methods (green chemistry) are among the advantages of this protocol. The potency of these compounds as anti-HIV-1 agents was investigated using molecular docking into integrase (IN) enzyme with code 1QS4 and the GROMACS software for molecular dynamics simulation. The final steps were evaluated in case of RMSD, RMSF, and Rg. The results revealed that the compound VII exhibit a good binding affinity to integrase ( = −10.99 kcal/mol) during 100 ns simulation time, and the analysis of RMSD suggested that compound VII was stable in the binding site of integrase.
Cytotoxicity and Antibacterial Activity of Mineral Trioxide Aggregate Cement with Radiopacity Introduced by ZrO2
Bioinorganic Chemistry and Applications ( IF 4.724 ) Pub Date : 2022-09-06 , DOI: 10.1155/2022/9574245
The article presents the results of in vitro studies on cytotoxicity and antibacterial activity of new MTA-type cements, developed on the basis of the sintered tricalcium silicate enriched with ZnO, along with an agent introducing the radiopacity in the form of ZrO2. The new materials have been developed to ensure that their physical and chemical properties are suited for endodontic applications. The cements were evaluated via characterisation of setting time, compressive strength, as well as translucency on X-ray images, and bioactivity in the simulated body fluid (SBF). The μCT was used to test the influence of the ZrO2 grains in the powder component on the microstructure of the produced cement. Then, the cytotoxic action of the cements was evaluated by applying a reference L-929 cell line. The conditions of the culture upon contact with the tested materials or with extracts from the cements were assessed using image analysis or an MTT colorimetric assay. Two strains of streptococci, Streptococcus mutans and Streptococcus sanguinis, were used to study the antibacterial activity of the tested cements with ZrO2 acting as the agent introducing the radiopacity. The new cements are characterised by appropriate properties as far as retrograde root canal filling is concerned.
Physicochemical Properties and Antibacterial Activity of Gellan Gum Incorporating Zinc Oxide/Carbon Nanotubes Bionanocomposite Film for Wound Healing
Bioinorganic Chemistry and Applications ( IF 4.724 ) Pub Date : 2022-08-28 , DOI: 10.1155/2022/3158404
Wound healing dressing based on a natural polymer of gellan gum incorporating zinc oxide nanoparticles and multiwall carbon nanotubes (GG/ZnONP + MWCNT) bionanocomposite film was fabricated via the solution casting method. The physicochemical properties of the film were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM). Moreover, the antibacterial properties of the bionanocomposite film were investigated for wound healing applications. The characterization results confirmed the reinforcement of the gellan gum (GG) matrix with zinc oxide nanoparticles (ZnONP) and multiwall carbon nanotubes (MWCNT), as an amorphous GG/ZnONP + MWCNT bionanocomposite film was obtained. SEM morphological analysis shows that the addition of ZnONP and MWCNT nanofillers changed the film microstructure into a sponge-like structure that is more suitable for fluid uptake and thus more useful for wound healing. The GG/ZnONP + MWCNT bionanocomposite film demonstrated good antibacterial activity against all strains tested. Furthermore, macroscopic analysis shows that the wound treated with GG/ZnONP + MWCNT bionanocomposite film recovered completely (100%) in 14 days, compared to pure GG film (90.76%) and negative control (77.40%). As a result, the GG/ZnONP + MWCNT bionanocomposite film could be a promising wound dressing material.
Process Optimization for Development of Guar Gum-Based Biodegradable Hydrogel Film Using Response Surface Methodology
Bioinorganic Chemistry and Applications ( IF 4.724 ) Pub Date : 2022-08-16 , DOI: 10.1155/2022/9180000
In the current study, a guar-gum-based biodegradable hydrogel film was prepared using an initiator (potassium persulfate), crosslinker (N-N methyl bis acrylamide), and plasticizer (glycerol) for packaging of fruits and vegetables. The effect of independent variables (initiator, crosslinker, and plasticizer) on the biodegradation (% wt. loss), color difference (ΔE), hardness (N), swelling index (%), and transparency (%) of the film was studied using Box–Behnken design, random surface methodology (RSM). The results showed significant effects on all the abovementioned parameters, and it was observed that the developed model was accurate, with a prediction error of only −3.19 to 2.99%. The optimized formulation for the preparation of hydrogel film was 0.15% initiator, 0.02% crosslinker, and 2.88% plasticizer exhibiting satisfactory biodegradability, color difference, hardness, swelling index, and transparency. Results showed that a guar-gum-based biodegradable hydrogel film has adequate physical, optical, and biodegradable properties and can be successfully utilized in the food packaging industry.
Structural, Optical, Antibacterial, and Anticancer Properties of Cerium Oxide Nanoparticles Prepared by Green Synthesis Using Morinda citrifolia Leaves Extract
Bioinorganic Chemistry and Applications ( IF 4.724 ) Pub Date : 2022-09-28 , DOI: 10.1155/2022/6835625
Currently, new advancements in the area of nanotechnology opened up new prospects in the field of medicine that could provide us with a solution for numerous medical complications. Although a several varieties of nanoparticles is being explored to be used as nanomedicines, cerium oxide nanoparticles (CeO2 NPs) are the most attractive due to their biocompatibility and their switchable oxidation state (+3 and +4) or in other words the ability to act as prooxidant and antioxidant depending on the pH condition. Green synthesis of nanoparticles is preferred to make it more economical, eco-friendly, and less toxic. The aim of our study here is to formulate the CeO2 NPs (CeO2 NPs) using Morinda citrifolia (Noni) leaf extract and study its optical, structural, antibacterial, and anticancer abilities. Their optical and structural characterization was accomplished by employing X-ray diffractography (XRD), TEM, EDAX, FTIR, UV-vis, and photoluminescence assays. Our CeO2 NPs expressed strong antibacterial effects against Gram-positive S. aureus and S. pneumonia in addition to Gram-negative E. coli and K. pneumonia when compared with amoxicillin. The anticancer properties of the green synthesized CeO2 NPs against human acute lymphoblastic leukemia (ALL) MOLT-4 cells were further explored by the meticulous study of their ability to diminish cancer cell viability (cytotoxicity), accelerate apoptosis, escalate intracellular reactive oxygen species (ROS) accumulation, decline the mitochondria membrane potential (MMP) level, modify the cell adhesion, and shoot up the activation of proapoptotic markers, caspase−3, −8, and −9, in the tumor cells. Altogether, the outcomes demonstrated that our green synthesized CeO2 NPs are an excellent candidate for alternative cancer therapy.
Bioinorganic Preparation of Hydroxyapatite and Rare Earth Substituted Hydroxyapatite for Biomaterials Applications
Bioinorganic Chemistry and Applications ( IF 4.724 ) Pub Date : 2023-01-25 , DOI: 10.1155/2023/7856300
Rare Earth elements in the lanthanide series are regarded as one of the finest options for the cationic substitution of calcium ions in hydroxyapatite (HA) because of their favorable impact on the biological characteristics of substituted HA. Neodymium and cerium were used to substitute 5% of calcium ions in HA, prepared via the wet precipitation method. Characterization tests for pure and substituted HA were conducted using XRD, FTIR, EDS, and FESEM. The results showed that changing part from calcium ions in hydroxyapatite to Nd and Ce ions altered its structure, composition, and morphology. Regarding the biological tests, the cytotoxicity test revealed a change in IC50 for both normal and cancer cell lines, where substitution part of the Ca ions with rare Earth elements led to increasing antitumor activity in comparison with HA without substitution; in addition, antibacterial and fungicide activity was evident for both HA and Nd-Ce/HA, with a modest increase in antibacterial activity of Nd-Ce/HA against S. epidermidis and E. coli in comparison with HA. These findings may shed light on the process by which Nd and Ce ions improve the biological characteristics of pure HA and the increased potential of these bioceramics.
Development of Microneedle Patch Loaded with Bacopa monnieri Solid Lipid Nanoparticles for the Effective Management of Parkinson’s Disease
Bioinorganic Chemistry and Applications ( IF 4.724 ) Pub Date : 2022-08-10 , DOI: 10.1155/2022/9150205
The demand for drug delivery systems (DDS) to treat Parkinson’s disease (PD) is still high, and microneedle (MN) assisted transdermal DDS offers enormous potential. Herbal products for PD have been shown to have antioxidant effects in reducing dopaminergic neurons from degeneration. Here, we attempted to incorporate solid lipid nanoparticles (SLNs) of Bacopa monnieri into dissolvable microneedle arrays and evaluate its neuroprotective activity. The bloodless and painless microneedle arrays through the transdermal route deliver the drug across the blood-brain barrier at the desired concentration. The quality by design (QbD) approach was employed for optimizing the SLNs formulations. The mechanical strength, in vitro release studies, ex-vivo permeation investigation, skin irritation test, histopathological studies, biochemical studies, and behavioural tests SLNs loaded microneedle arrays were performed. The microneedle patches obtained were shown to be mechanically robust and were also found to be nonirritant with a decreased degree of bradykinesia, high motor coordination, and balance ability. Compared to systemic delivery systems, such an MN method can achieve a considerably lower effective dose and allow long-term home-based treatment.
Synthesis and Analysis of Impregnation on Activated Carbon in Multiwalled Carbon Nanotube for Cu Adsorption from Wastewater
Bioinorganic Chemistry and Applications ( IF 4.724 ) Pub Date : 2022-07-31 , DOI: 10.1155/2022/7470263
Industrial wastes contain more toxins that get dissolved in the rivers and lakes, which are means of freshwater reservoirs. The contamination of freshwater leads to various issues for microorganisms and humans. This paper proposes a novel method to remove excess copper from the water. The nanotubes are used as a powder in membrane form to remove the copper from the water. The multiwalled carbon nanotube is widely used as a membrane for filtration. It contains many graphene layers of nm size that easily adsorbs the copper when the water permeates through it. Activated carbon is the earliest and most economical method that also adsorbs copper to a certain extent. This paper proposes the methods of involving the activated carbon in the multiwalled carbon nanotube to improve the adsorption capability of the copper. Here, activated carbon is impregnated on the multiwalled carbon nanotube’s defect and imperfect surface areas. It makes more adsorption sites on the surface, increasing the adsorption amount. The same method is applied to Hydroxyl functionalized multiwalled carbon nanotubes. Both the methods showed better results and increased the copper removal. The functionalized method removed 93.82% copper, whereas the nonfunctionalized method removed 80.62% copper from the water.
Facile Fabrication of CuO Nanoparticles Embedded in N-Doped Carbon Nanostructure for Electrochemical Sensing of Dopamine
Bioinorganic Chemistry and Applications ( IF 4.724 ) Pub Date : 2022-10-14 , DOI: 10.1155/2022/6482133
In the present study, a highly selective and sensitive electrochemical sensing platform for the detection of dopamine was developed with CuO nanoparticles embedded in N-doped carbon nanostructure (CuO@NDC). The successfully fabricated nanostructures were characterized by standard instrumentation techniques. The fabricated CuO@NDC nanostructures were used for the development of dopamine electrochemical sensor. The reaction mechanism of a dopamine on the electrode surface is a three-electron three-proton process. The proposed sensor’s performance was shown to be superior to several recently reported investigations. Under optimized conditions, the linear equation for detecting dopamine by differential pulse voltammetry is Ipa (μA) = 0.07701 c (μM) − 0.1232 (R2 = 0.996), and the linear range is 5-75 μM. The limit of detection (LOD) and sensitivity were calculated as 0.868 μM and 421.1 μA/μM, respectively. The sensor has simple preparation, low cost, high sensitivity, good stability, and good reproducibility.
Research on Microseismic Source Location Method Based on Waveform Characteristics Monitored by Nanomaterial Sensor under the Background of Metal Oxide Polluted Environment
Bioinorganic Chemistry and Applications ( IF 4.724 ) Pub Date : 2022-09-24 , DOI: 10.1155/2022/5479007
In recent years, the monitoring range of source location technology has developed from being one-dimensional and two-dimensional to being three-dimensional. However, due to the complexity and nonuniformity of the seismic wave propagation medium and the uncertainty of the propagation law, there will be large errors in the source location results. Therefore, the analysis of vibration signal has become the key problem of current research. This paper designs a microseismic monitoring system based on Internet of Things sensors, which can monitor the vibration wave characteristics of vibration signals. In order to test the positioning accuracy of the system, this paper introduces three positioning methods: target positioning method based on time difference, time delay estimation method based on EMD, and source target positioning method based on the characteristic frequency of vibration signal. The purpose of this paper is to find the most accurate method from the three source location methods. Through these three methods, the vibration source generated by a single person walking in situ can be located in the vibration positioning experiment of human walking. The error between the actual position and the measurement source position is compared. The results show that the time delay estimation method based on empirical mode decomposition has the highest positioning accuracy. In addition, in the microseismic experiment, it is proved that the positioning accuracy of EMD using L1 norm statistical criterion is higher than that using L2 norm statistical criterion.
Cytotoxicity and Genotoxicity of Biogenic Silver Nanoparticles in A549 and BEAS-2B Cell Lines
Bioinorganic Chemistry and Applications ( IF 4.724 ) Pub Date : 2022-09-23 , DOI: 10.1155/2022/8546079
Introduction. Biogenic silver nanoparticles (AgNPs-GA) were successfully synthesised using Garcinia atroviridis leaf extract as a reducing agent, which has ethnopharmacological claims against various diseases including cancer. Aim of the Study. Aim of the study is to discover whether AgNPs-GA has cytotoxic and genotoxic effects on cancerous (A549) and noncancerous (BEAS-2B) human lung cells. Materials and Methods. The cytotoxicity profiles of AgNPs-GA were characterized by MTT assay, intracellular reactive oxygen species (ROS) assay, and DAPI and AOPI double staining, whilst genotoxicity was assessed using Comet Assay analysis. The level of silver ions (Ag+) and cellular uptake of AgNPs-GA were evaluated by ICP-OES and TEM analyses, respectively. Results. A significant cytotoxic effect was observed by AgNPs-GA on both A549 and BEAS-2B cell lines, with IC50 values of 20–28 μg/ml and 12–35 μg/ml, respectively. The cytotoxicity profile of AgNPs-GA was also accompanied by a pronounced increase in ROS production, DNA damage, and apoptosis. Moreover, Ag+ was also detected in cells exposed to AgNPs-GA threefold higher compared to controls. In this study, AgNPs-GA were endocytosed within lysosomes, which may direct to secondary toxicity effects including oxidative stress, impairment of the cell membrane, DNA fragmentation, and cell death. Conclusions. Taken together, novel toxicological-related mechanisms by AgNPs-GA were proposed involving the generation of ROS that causes DNA damage which led to programmed cell death in both A549 and BEAS-2B cells. Therefore, a combination of scientific assessments is constantly needed to ensure that the quality of biosynthesized nanoparticles is controlled and their safe development is promoted.
5-Fluorouracil-Loaded PLGA Nanoparticles: Formulation, Physicochemical Characterisation, and In VitroAnti-Cancer Activity
Bioinorganic Chemistry and Applications ( IF 4.724 ) Pub Date : 2023-04-17 , DOI: 10.1155/2023/2334675
The major goal of this investigation was to prepare a drug delivery of polymeric nanoparticles (NPs) from 5-fluorouracil (FU) that could be delivered intravenously and improve the therapeutic index of the FU. In order to achieve this, interfacial deposition method was used to prepare FU entrapped poly-(lactic-co-glycolic acid) nanoparticles (FU-PLGA-NPs). The influence of various experimental settings on the effectiveness of FU integration into the NPs was assessed. Our findings show that the technique used to prepare the organic phase and the ratio of the organic phase to the aqueous phase had the greatest impact on the effectiveness of FU integration into NPs. The results show that the preparation process produced spherical, homogenous, negatively charged particles with a nanometric size of 200 nm that are acceptable for intravenous delivery. A quick initial release over 24 h and then slow and steady release of FU from the formed NPs, exhibiting a biphasic pattern. Through the human small cell lung cancer cell line (NCI-H69), the in vitro anti-cancer potential of the FU-PLGA-NPs was evaluated. It was then associated to the in vitro anti-cancer potential of the marketed formulation Fluracil®. Investigations were also conducted into Cremophor-EL (Cre-EL) potential activity on live cells. The viability of NCI-H69 cells was drastically reduced when they were exposed to 50 µg·mL−1 Fluracil®. Our findings show that the integration of FU in NPs significantly increases the drug cytotoxic effect in comparison to Fluracil®, with this potential effect being particularly important for extended incubation durations.
Effect of Phyto-Assisted Synthesis of Magnesium Oxide Nanoparticles (MgO-NPs) on Bacteria and the Root-Knot Nematode
Bioinorganic Chemistry and Applications ( IF 4.724 ) Pub Date : 2022-08-08 , DOI: 10.1155/2022/3973841
The root-knot nematode was examined using magnesium oxide nanoparticles (MgO-NPs) made from strawberries. The biologically synthesized MgO-NPs were characterized by UV, SEM, FTIR, EDS, TEM, and dynamic light scattering (DLS). Nanoparticles (NPs) were examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and shown to be spherical to hexagonal nanoparticles with an average size of 100 nm. MgO-NPs were tested on the root-knot nematode M. incognita (Meloidogynidae) and the plant pathogenic bacteria Ralstonia solanacearum. The synthesized MgO-NPs showed a significant inhibition of R. solanacearum and the root-knot nematode. MgO-NPs cause mortality and inhibit egg hatching of second-stage juveniles (J2) of M. incognita under the in vitro assay. This study aims to examine the biological activity of biogenic MgO-NPs. The findings marked that MgO-NPs may be utilized to manage R. solanacearum and M. incognita and develop effective nematicides. In addition, the antioxidant capacity of MgO-NPs was determined by using 2, 2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH).
中科院SCI期刊分区
大类学科小类学科TOP综述
化学3区BIOCHEMISTRY & MOLECULAR BIOLOGY 生化与分子生物学4区
补充信息
自引率H-indexSCI收录状况PubMed Central (PML)
6.4021Science Citation Index Expanded
投稿指南
期刊投稿网址
http://mts.hindawi.com/login/
收稿范围
收录载体
微信二维码
  • 微信公众号二维码
  • 关注官方微信公众号
  • 微信二维码
  • 微信扫码联系客服
平台客服