960化工网/ 文献
期刊名称:Carbohydrate Polymers
期刊ISSN:0144-8617
期刊官方网站:http://www.elsevier.com/wps/find/journaldescription.cws_home/405871/description#description
出版商:Elsevier Ltd
出版周期:Semimonthly
影响因子:10.723
始发年份:1981
年文章数:1260
是否OA:否
Impact of long-term ultrasound treatment on structural and physicochemical properties of starches differing in granule size
Carbohydrate Polymers ( IF 10.723 ) Pub Date : 2023-07-15 , DOI: 10.1016/j.carbpol.2023.121195
Granule size is a critical parameter affecting starch processing properties. Ultrasound treatments of up to 22 h were applied two starches differing in granule size (quinoa starch and maize starch). The two starches showed significantly different trends in both structural and physicochemical aspects affected by the ultrasound treatments. For the small granule starch (volume-weighted mean particle size of 1.79 μm), short-term ultrasonication caused an increase of swelling power. As treatment time increased, the physicochemical properties were influenced by degradation of amylopectin external chains. The X-ray diffraction results showed a decrease of relative crystallinity and changes of peak areas with long-term treatment. On the other hand, a balance between amylose leaching and surface damages was seen for the large granule starch (volume-weighted mean particle size of 18.3 μm). The effect of ultrasound modification on starches with different molecular and granular structures was discussed. A possible mechanism of the ultrasound effect was proposed.
The influence of ionic polysaccharides on the physicochemical and techno-functional properties of soy proteins; a comprehensive review
Carbohydrate Polymers ( IF 10.723 ) Pub Date : 2023-07-15 , DOI: 10.1016/j.carbpol.2023.121191
Since the world's population has surged in recent decades, the need for sustainable as well as environmentally friendly protein sources is growing. However, there are daunting challenges in utilizing these protein sources in the food industry due to their poor techno-functional properties compared with animal proteins. Numerous procedures have been introduced to improve plant protein functionalities with related pros and cons. Among them, complexation with polysaccharides is considered a safe and effective process for modulating plant proteins' technological and industrial applications. Notwithstanding the nutritional value of soy protein (SP) as a “complete protein,” it is a crucial protein commercially because of its rank as the highest-traded plant-based protein worldwide. The current review deals with SP complexation with ionic polysaccharides, including chitosan, alginate, carrageenan, and xanthan gum, and their effects on the physicochemical and techno-functional properties of SP. Accordingly, the structure of SP and the abovementioned polysaccharides have been considered for a better understanding of the possible interactions. Then, the changes in the physicochemical and functional properties of SP and their potential applications in the formulation of plant-based food products have been discussed. Overall, ionic polysaccharides at optimum conditions would improve the functional properties of SP by altering its secondary structure, making it suitable for a wide range of applications in the food industry.
α-Substituted ketones as reagent for Passerini modification of carboxymethyl cellulose: Toward dually functionalized derivatives and thermo-sensitive chemical hydrogels
Carbohydrate Polymers ( IF 10.723 ) Pub Date : 2023-07-21 , DOI: 10.1016/j.carbpol.2023.121228
The present works describes the Passerini modification of carboxymethyl cellulose (CMC) by using a library of nine α-substituted ketones derivatives, differing in their hydrophobicity and reactivity, conjointly with cyclohexyl isocyanide. The Passerini ligation, achieved in aqueous and mild conditions, was shown to be successful, leading to a large panel of dually functionalized CMC derivatives, in an eco-friendly manner. A particular attention was dedicated to the influence of the experimental parameters such as the stoichiometry, the nature of a co-solvent or the temperature, which allowed to tune the extent of modification. The reactivity of the ketone was proven to be governed by its i) compatibility with water, ii) sterical accessibility, and by iii) the presence of neighboring electron-withdrawing group. The resulting Passerini CMC products modified by methacrylate moieties (CMC-MA) were used as reactive macromonomer under a “grafting through” approach. The copolymerization of CMC-MA with oligoethylene glycol methacrylate (OEGMA) and diethylene glycol methacrylate (DEGMA) upon thermal radical reaction conditions enabled to generate tightly cross-linked chemical hydrogels, with a thermo-sensitive and thermo-reversible behavior, reflected by a macroscopical shrinkage/swelling response, and confirmed by SAXS analysis. Such chemical strategy paves the way toward multifunctional polysaccharide-based networks with potential utilizations as drug delivery devices, dye removals or actuators.
Maltogenic amylase: Its structure, molecular modification, and effects on starch and starch-based products
Carbohydrate Polymers ( IF 10.723 ) Pub Date : 2023-07-08 , DOI: 10.1016/j.carbpol.2023.121183
Maltogenic amylase (MAA) (EC3.2.1.133), a member of the glycoside hydrolase family 13 that mainly produces α-maltose, is widely used to extend the shelf life of bread as it softens bread, improves its elasticity, and preserves its flavor without affecting dough processing. Moreover, MAA is used as an improver in flour products. Despite its antiaging properties, the hydrolytic capacity and thermal stability of MAA can't meet the requirements of industrial application. However, genetic engineering techniques used for the molecular modification of MAA can alter its functional properties to meet application-specific requirements. This review briefly introduces the structure and functions of MAA, its application in starch modification, its effects on starch-based products, and its molecular modification to provide better insights for the application of genetically modified MAA in starch modification.
Stabilization of capsanthin in physically-connected hydrogels: Rheology property, self-recovering performance and syringe/screw-3D printing
Carbohydrate Polymers ( IF 10.723 ) Pub Date : 2023-07-18 , DOI: 10.1016/j.carbpol.2023.121209
This work presented a facile way of stabilizing capsanthin by physically-connected soft hydrogels via utilizing specially-structured polysaccharides, and investigated rheological properties, self-recovering mechanism and 3D printability. The functionalized hydrogels demonstrated excellent color quality including redness, yellowness index and hue with great storage stability and visual perception. The soft hydrogels fabricated with properly sequenced polyglyceryl fatty acid esters, β-cyclodextrin, chitosan, and low-content capsanthin possessed outstanding extrudability, appropriate yield stress, reasonable mechanical strength, rational elasticity and structure sustainability. Furthermore, the self-recovering properties based on hydrogen bonds, host-guest interactions and electrostatic interactions were revealed and verified by structural, zeta potential, micro-morphological, zeta potential, thixotropic, creep-recovery, and macroscopic/microscopic characterizations. Along with excellent antioxidant performance, the subsequent 3D printing onto bread with complex models elucidated the high geometry accuracy and great sensory characters. The sequenced physically-connected hydrogels incorporated with capsanthin can provide new insights on stabilizing hydrophobic biomaterials and developing the 3D printed exquisite, innovative food.
An inulin-type fructan isolated from Serratula chinensis alleviated the dextran sulfate sodium-induced colitis in mice through regulation of intestinal barrier and gut microbiota
Carbohydrate Polymers ( IF 10.723 ) Pub Date : 2023-07-17 , DOI: 10.1016/j.carbpol.2023.121206
Herein, we aimed to explore the polysaccharide material basis of Serratula chinensis and establish its beneficial effects against colitis. A neutral polysaccharide (SCP) was extracted from S. chinensis in high yield using hot water. The molecular weights were calculated by HPSEC as Mw = 2928 Da, Mn = 2634 Da, and Mw/Mn = 1.11. FT-IR and 1D/2D-NMR spectroscopic analyses confirmed that SCP was an inulin-type fructan with α-D-Glcp-(1 → [1)-β-D-Fruf-(2]17) linkages. Treatment with SCP (200 or 400 mg/kg) alleviated dextran sulfate sodium (DSS)-induced mouse colitis symptoms, including the loss of body weight, increase of disease activity index score, and shortening of colon length. Histopathological and immunofluorescence assessments revealed that SCP could reduce pathological damage to the colon, restore the number of goblet cells, increase the content of glycoproteins in goblet cells and mucins in crypts, and enhance the expression of tight junction proteins ZO-1 and occludin. In addition, metagenomic sequencing revealed that SCP could improve the dysbiosis of gut microbiomes and act on multiple microbial functions. Moreover, SCP treatment increased the content of colonic acetic acid and butanoic acid. Collectively, these results indicated that SCP could alleviate the DSS-induced colitis in mice through regulation of intestinal barrier and gut microbiota.
Understanding CaCl2 induces surface gelatinization to promote cold plasma modified maize starch: Structure-effect relations
Carbohydrate Polymers ( IF 10.723 ) Pub Date : 2023-07-16 , DOI: 10.1016/j.carbpol.2023.121200
To investigate the influence of surface gelatinization on cold plasma (CP) modification of starch, this study used CaCl2 to modify maize starch by surface gelatinization, further combined with CP treatment and characterized its multi-scale structure and physicochemical properties. The results revealed that starch surface gelatinization causes roughness and fragmentation on the granule surface, and CP undergoes etching effects. The synergistic modification promotes starch degradation, as evidenced by molecular weight decrease and short-chain ratio increase. Although the growth rings, FT-IR patterns, and crystal types of starch remained unchanged, the synergistic modification induced a reduction in the short-range orderliness and crystallinity of starch, thus causing a decrease in the pasting properties and contributing to its solubility. Notably, the CP treatment improved the RDS and SDS contents of the gelatinized starch due to more active sites on the granule surface after gelatinization, and this finding may provide insight into the deep processing of starch.
Cell-cycle arrest and mitochondria-dependent apoptosis induction in T-47D cells by the capsular polysaccharide from the marine bacterium Kangiella japonica KMM 3897
Carbohydrate Polymers ( IF 10.723 ) Pub Date : 2023-07-26 , DOI: 10.1016/j.carbpol.2023.121237
In this study, we reported the in vitro mechanisms of antiproliferative activity of capsular polysaccharide derived from marine Gram-negative bacteria Kangiella japonica KMM 3897 in human breast сarcinoma T-47D cells. Flow cytometric and Western blot analysis revealed that capsular polysaccharide effectively suppressed T-47D cell proliferation by inducing G0/G1 phase arrest and mitochondrial-dependent apoptosis. Moreover, polysaccharide influenced the ERK1/2 and p38 signaling pathways. The results of this study would enrich our understanding of the molecular mechanism of the anti-cancer activity of sulfated polysaccharides from marine Gram-negative bacteria.
Double-network cellulose-based hybrid hydrogels with favourable biocompatibility and antibacterial activity for wound healing
Carbohydrate Polymers ( IF 10.723 ) Pub Date : 2023-07-11 , DOI: 10.1016/j.carbpol.2023.121193
Bacterial infections are among the leading causes of delayed wound healing. At present, a series of antibacterial materials, such as antibiotics, antimicrobial peptides (AMPs), metals and metal oxides (MMOs), have been used to fabricate antibacterial wound dressings. However, their translational potential is limited owing to their poor biocompatibility. ε-Polylysine (ε-PL) is a natural macromolecule with excellent biocompatibility and broad-spectrum antibacterial activity. Herein, ε-PL was incorporated into a cellulose/γ-polyglutamic acid (γ-PGA) composite hydrogel to form a novel double-network hydrogel termed as CGLH. The elastic modulus of CGLH increased from 0.097 ± 0.015 MPa to 0.441 ± 0.096 MPa, and the equilibrium swelling ratio increased from 382.7 ± 24.3 % to 611.2 ± 8.6 %. Several preclinical models were used to investigate the translational potential of this hydrogel. CGLH exhibited good biocompatibility and antibacterial activity, which promoted the healing of infected and critical-size wounds within 12 days. CGLH had positive effects on collagen synthesis, vascularization and cell proliferation. As a result, this study not only provided an effective alternative for wound healing but also proposed a double-network strategy for creating biocompatible and antibacterial biomaterials.
Ultrafast and facile construction of programmable, multidimensional wrinkled-patterned polyacrylamide/sodium alginate hydrogels for human skin-like tactile perception
Carbohydrate Polymers ( IF 10.723 ) Pub Date : 2023-07-13 , DOI: 10.1016/j.carbpol.2023.121196
Customizable structures and patterns are becoming powerful tools for biomimetic design and application of soft materials. The construction of long-range ordered self-wrinkled structures on multi-dimensional and complex-shaped surfaces with facile, fast and efficient strategies still faces serious challenges. During the stretch-recovery process, the carboxyl groups in the polyacrylamide/sodium alginate dual network gel form robust coordination with Fe3+ to achieve a hard shell layer, resulting in a modulus mismatch between the inner soft layer and the outer hard layer, thereby forming a wrinkled surface. This flexible strategy allows simultaneous construction of complex topologies from 1D to 3D wits well-organized microstructure and controllable dimensions. The mechanism of the influence of ion treating time and pre-stretching ratio on wrinkle wavelength was explored in detail. The finite element simulations matched well with the experimental results. Due to the unique surface and dual crosslinking network, the self-wrinkled hydrogel maintains a high sensitivity of up to 67.47 kPa−1 in 1000 compression cycles. As a high-sensitivity pressure sensor integrated into the detection system, it can be efficiently applied to the contact dynamic tactile perception and monitoring of various movement behaviors of the human body.
Homogeneous wet-spinning construction of skin-core structured PANI/cellulose conductive fibers for gas sensing and e-textile applications
Carbohydrate Polymers ( IF 10.723 ) Pub Date : 2023-07-06 , DOI: 10.1016/j.carbpol.2023.121175
Fiber-based wearable electronic textiles have broad applications, but non-degradable substrates may contribute to electronic waste. The application of cellulose-based composite fibers as e-textiles is hindered by the lack of fast and effective preparation methods. Here, we fabricated polyaniline (PANI)/cellulose fibers (PC) with a unique skin-core structure through a wet-spinning homogeneous blended system. The conductive network formation was enabled at a mere 1 wt% PANI. Notably, PC15 (15 wt% PANI) shows higher electrical conductivity of 21.50 mS cm−1. Further, PC15 exhibits excellent ammonia sensing performance with a sensitivity of 2.49 %/ppm and a low limit of detection (LOD) of 0.6 ppm. Cellulose-based composite fibers in this work demonstrate good gas sensing and anti-static properties as potential devices for smart e-textiles.
Pulse EPR spectroscopy and molecular modeling reveal the origins of the local heterogeneity of dietary fibers
Carbohydrate Polymers ( IF 10.723 ) Pub Date : 2023-07-04 , DOI: 10.1016/j.carbpol.2023.121167
Optimizing human diet by including dietary fibers would be more efficient when the fibers' chain interactions with other molecules are understood in depth. Thereby, it is important to develop methods for characterizing the fiber chain to be able to monitor its structural alterations upon intermolecular interactions. Here, we demonstrate the utility of the electron paramagnetic resonance (EPR) spectroscopy, complemented by simulations in probing the atomistic details of the chain conformations for spin-labeled fibers. Barley β-glucan, a native polysaccharide with linear chain, was utilized as a test fiber system to demonstrate the technique's capabilities. Pulse dipolar EPR data show good agreement with results of the fiber chain modeling, revealing sinuous chain conformations and providing polymer shape descriptors: the gyration tensor, spin-spin distance distribution function, and information about proton density near the spin probe. Results from EPR measurements point to the fiber aggregation in aqueous solution, which agrees with the results of the dynamic light scattering. We propose that the combination of pulse EPR measurements with modeling can be a perfect experimental tool for in-depth structural investigation of dietary fibers and their interaction under such conditions, and that the presented methodology can be extended to other weakly ordered or disordered macromolecules.
Trojan-horse mineralization of trigger factor to impregnate non-woven alginate fabrics for enhanced hemostatic efficacy
Carbohydrate Polymers ( IF 10.723 ) Pub Date : 2023-07-19 , DOI: 10.1016/j.carbpol.2023.121213
Uncontrolled hemorrhage remains a leading cause of mortality after trauma. This work describes a facile mineralization strategy for enhancing hemostatic efficacy of alginate non-woven fabrics, involving the precipitation of amorphous CaCO3 induced by alginate fibers, along with Trojan-horse-like tissue factor (TF) encapsulation. The amorphous CaCO3 served as a transient carrier, capable of releasing Ca2+ and TF upon contact with blood. Coagulation test and rat tail cut and hemorrhaging liver models all revealed superior hemostatic capability of mineralized TF-in-alginate fabrics compared to bare fabrics, solely mineralized form, or commercial zeolite-modified gauze, benefiting from the combined hemostatic properties of alginate matrix and released Ca2+ and TF. Meanwhile, comprehensive biocompatibility and mechanical stability evaluations demonstrate the ternary composite's good biosafety. These results along with the extension study with chitosan- and cellulose-based dressings underline the great potential and versatility of polysaccharide-hemostat-mediated CaCO3 mineralization with TF integration for achieving rapid hemorrhage control.
Formulation of DOX-dimer with bi-functionalized chitooligosaccharide for tumor-specific self-boosted drug release and synergistic chemo/chemodynamic therapy
Carbohydrate Polymers ( IF 10.723 ) Pub Date : 2023-07-17 , DOI: 10.1016/j.carbpol.2023.121210
The toxic side effects and possible drug resistance of the chemotherapeutics hinder their antitumor efficacy. Here, a pH/reactive oxygen species (ROS) dual-triggered nanodrug was developed for the tumor-specific self-boosted drug release and synergistic chemo/chemodynamic therapy, by formulating ROS-cleavable doxorubicin (DOX)-based dimer (DOX-TK-DOX) with bi-functionalized chitooligosaccharide (COS-Fc-TK) with ferrocenecarboxylic acid (Fc) and thioketal (TK). The resultant DOX-TK-DOX/COS-Fc-TK nanoparticles with a high DOX content of 39.70 % showed tumor-specific self-boosted drug release, which was triggered by highly toxic OH generated via Fc-catalyzed Fenton reaction of the endogenous H2O2 in tumor intracellular microenvironment. As a result, a synergistic chemo/chemodynamic therapy with combination index (CI) of 0.94 was achieved for selective treatment of tumors.
Duckweed pectic-arabinogalactan-proteins can crosslink through borate diester bonds
Carbohydrate Polymers ( IF 10.723 ) Pub Date : 2023-07-14 , DOI: 10.1016/j.carbpol.2023.121202
Material containing pectin and arabinogalactan-protein (AGP) was released and purified from Spirodela alcohol insoluble residues. Results of carbohydrate analyses and two-dimensional NMR spectroscopy suggest that this material is composed of apiogalacturonan and rhamnogalacturonan-I covalently attached to AGPs. 11B NMR spectroscopy indicated that some of the glycoses in this complex exist as their boric acid monoesters. Borate diesters were formed when the pectic-AGPs were allowed to react at pH above 6.2 with the boron-depleted pectic-AGPs, suggesting that in vitro two pectic-AGP molecules can crosslink to one another through borate. Borate diesters also formed when the pectic-AGPs were incubated with monomeric rhamnogalacturonan-II in the presence of Pb2+ ion at pH 9.2. This data presents evidence of the first wall polymer after rhamnogalacturonan-II to crosslink through borate diesters. We suggest that the formation of these borate-crosslinks may help Spirodela respond to high-pH condition.
Tunable structure of chimeric isomaltomegalosaccharides with double α-(1 → 4)-glucosyl chains enhances the solubility of water-insoluble bioactive compounds
Carbohydrate Polymers ( IF 10.723 ) Pub Date : 2023-07-08 , DOI: 10.1016/j.carbpol.2023.121185
Isomaltomegalosaccharides with α-(1 → 4) and α-(1 → 6)-segments solubilize water-insoluble ligands since the former complexes with the ligand and the latter solubilizes the complex. Previously, we enzymatically synthesized isomaltomegalosaccharide with a single α-(1 → 4)-segment at the reducing end (S-IMS) by dextran dextrinase (DDase), but the chain length [average degree of polymerization (DP) ≤ 9] was insufficient for strong encapsulation. We hypothesized that the conjugation of longer α-(1 → 4)-segment afforded the promising function although DDase is incapable to do so. In this study, the cyclodextrin glucanotransferase-catalyzed coupling reaction of α-cyclodextrin to S-IMS synthesized a new α-(1 → 4)-segment at the nonreducing end (N-4S) of S-IMS to form D-IMS [IMS harboring double α-(1 → 4)-segments]. The length of N-4S was modulated by the ratio between α-cyclodextrin and S-IMS, generating N-4Ss with DPs of 7–50. Based on phase-solubility analysis, D-IMS-28.3/13/3 bearing amylose-like helical N-4S with DP of 28.3 displayed a water-soluble complex with aromatic drugs and curcumin. Small-angle X-ray scattering revealed the chain adapted to rigid in solution in which the radius of gyration was estimated to 2.4 nm. Furthermore, D-IMS with short N-4S solubilized flavonoids of less-soluble multifunctional substances. In our research, enzyme-generated functional biomaterials from DDase were developed to maximize the hydrophobic binding efficacy towards water-insoluble bioactive compounds.
Food freshness monitoring using poly(vinyl alcohol) and anthocyanins doped zeolitic imidazolate framework-8 multilayer films with bacterial nanocellulose beneath as support
Carbohydrate Polymers ( IF 10.723 ) Pub Date : 2023-07-10 , DOI: 10.1016/j.carbpol.2023.121184
Multilayer intelligent freshness labels based on bacterial nanocellulose (BNC), poly(vinyl alcohol) (PVA), and anthocyanins doped zeolitic imidazolate framework-8 (A-ZIF-8) nanocrystals were developed in this study. First, optical, structural, thermal, and surface characterizations of A-ZIF-8 nanocrystals were performed, and the successful incorporation of anthocyanins into ZIF-8 nanocrystals was demonstrated. Next, A-ZIF-8 was added into PVA, and multilayer films were fabricated by spin-coating PVA/A-ZIF-8 layers onto BNC. The effect of the number of deposition cycles on the barrier, mechanical, thermal, morphological, and colorimetric properties of multilayer labels was investigated. The ammonia sensing, mechanical, and barrier properties of the films were shown to be tuned by the number of the PVA/A-ZIF-8 layers on the BNC. Among the developed films, BNC-2PVA/A-ZIF-8 films with the best colorimetric sensitivity toward volatile ammonia were used to monitor the freshness of skinless chicken breasts. The changes in the ΔE and a* values of BNC-2PVA/A-ZIF-8 film demonstrated a good correlation with the microbial and TVB-N levels in samples over 10 days of storage at 4 °C.
Cyclodextrin-based metal-organic framework materials: Classifications, synthesis strategies and applications in variegated delivery systems
Carbohydrate Polymers ( IF 10.723 ) Pub Date : 2023-07-17 , DOI: 10.1016/j.carbpol.2023.121198
Metal-organic frameworks (MOFs) are coordination compounds that possess an adjustable structure and controllable function. Despite their wide applications in various industries, the use of MOFs in the fields of food and biomedicine is limited mainly due to their potential biological toxicity. Researchers have thus focused on developing biocompatible MOFs to address this issue. Among them, cyclodextrin-based metal-organic frameworks (CD-MOFs) have emerged as a promising alternative. CD-MOFs are novel MOFs synthesized using naturally carbohydrate cyclodextrin and alkali metal cations, and possess renewable, non-toxic, and edible characteristics. Due to their high specific surface area, controllable porosity, great biocompatibility, CD-MOFs have been widely used in various delivery systems, such as encapsulation of nutraceuticals, flavors, and antibacterial agents. Although the field of CD-MOF materials is still in its early stages, they provide a promising direction for the development of MOF materials in the delivery field. This review describes classification and structural characteristics, followed by an introduction to formation mechanism and commonly used synthetic methods for CD-MOFs. Additionally, we discuss the status of the application of various delivery systems based on CD-MOFs. Finally, we address the challenges and prospects of CD-MOF materials, with the aim of providing new insights and ideas for their future development.
Hyaluronic acid-mediated collagen intrafibrillar mineralization and enhancement of dentin remineralization
Carbohydrate Polymers ( IF 10.723 ) Pub Date : 2023-07-03 , DOI: 10.1016/j.carbpol.2023.121174
Non-collagenous proteins (NCPs) in the extracellular matrix (ECM) of bone and dentin are known to play a critical regulatory role in the induction of collagen fibril mineralization and are embedded in hyaluronic acid (HA), which acts as a water-retaining glycosaminoglycan and provides necessary biochemical and biomechanical cues. Our previous study demonstrated that HA could regulate the mineralization degree and mechanical properties of collagen fibrils, yet its kinetics dynamic mechanism on mineralization is under debate. Here, we further investigated the role of HA on collagen fibril mineralization and the possible mechanism. The HA modification can significantly promote intrafibrillar collagen mineralization by reducing the electronegativity of the collagen surface to enhance calcium ions (Ca2+) binding capacity to create a local higher supersaturation. In addition, the HA also provides additional nucleation sites and shortens the induction time of amorphous calcium phosphate (ACP)-mediated hydroxyapatite (HAP) crystallization, which benefits mineralization. The acceleration effect of HA on intrafibrillar collagen mineralization is also confirmed in collagen hydrogel and in vitro dentin remineralization. These findings offer a physicochemical view of the regulation effect of carbohydrate polymers in the body on biomineralization, the fine prospect for an ideal biomaterial to repair collagen-mineralized tissues.
Antibacterial self-healing bilayer dressing for epidermal sensors and accelerate wound repair
Carbohydrate Polymers ( IF 10.723 ) Pub Date : 2023-07-01 , DOI: 10.1016/j.carbpol.2023.121171
This study aimed to investigate the effect of the bilayer hydrogel as a wound dressing on the wound-healing rate. We synthesized a self-healing hydrogel with optimized formulation by introducing natural polymer (chitosan) and arginine to the hydrogel composition. We then characterized the hydrogels using FT-IR, thermal analysis, mechanical testing, and in vitro and in vivo assay. The resulting bilayer wound dressing offers a lot of desirable characteristics, including good self-healing and repeatable adhesiveness. Likewise, the conductive bilayer wound dressing could be used to analyze the patient's healthcare data in real-time as epidermal sensors. Bilayer wound dressings remarkably have broad antibacterial efficacy against Gram-positive and Gram-negative bacteria. The potential applications of this bilayer wound dressing are illustrated by detectable body movement and conductivity. The wound-healing rate of bilayer wound dressings containing chitosan and arginine was higher, but those without the aforementioned ingredients had lower wound-healing efficacy. Additionally, promoting collagen synthesis and reducing wound infection has a considerable therapeutic impact on wounds. These results could have significant implications for the development of high-performance wound dressings.
中科院SCI期刊分区
大类学科小类学科TOP综述
工程技术2区CHEMISTRY, APPLIED 应用化学1区
补充信息
自引率H-indexSCI收录状况PubMed Central (PML)
12.50172Science Citation Index Science Citation Index Expanded
投稿指南
期刊投稿网址
http://ees.elsevier.com/carbpol/
收稿范围
Note: The Aims and Scope of Carbohydrate Polymers must be complied with in order for submissions to be considered for review and possible publication. The Aims and Scope have been modified as of 24 July 2018. Carbohydrate Polymers is a major journal within the field of glycoscience, and covers the study and exploitation of polysaccharides which have current or potential application in areas such as bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering and wood, and other aspects of glycoscience. The role of the well-characterized carbohydrate polymer must be the major proportion of the work reported, not a peripheral topic. At least one named carbohydrate polymer must be cited and be the main focus of the paper and its title. Research must be innovative and advance scientific knowledge. Characterization - For all polysaccharides, including those obtained from a supplier, essential structural information which will affect their behavior in the subsequent work should be given, along with a description of how that information was ascertained. Examples of such essential information include molecular weight, mannuronate/guluronate ratio for alginates, degree of esterification for pectin, degree of deacetylation for chitosan. Editors are unlikely to send papers for formal review with a statement such as "sodium alginate was purchased from XXX Inc." unless additional information is supplied. For papers involving synthesis, polysaccharide derivatives must also be well-characterized. For papers describing identity or application of newly-discovered polysaccharides, purity and monosaccharide composition are essential; some molecular size and linkage information is highly desirable. Hypotheses - Nearly all scientific papers benefit from inclusion of a statement of hypothesis. Such statements should be concise, declarative, and should describe the one or more key hypotheses that the studies upon which the manuscript is based were intended to confirm or refute. Inclusion of a hypothesis statement makes it simple to contrast the hypothesis with the most relevant previous literature and point out what the authors feel is distinct about the current hypothesis (novelty). It also permits the authors to describe why they feel it would be important to prove the hypothesis correct (significance). Topics of interest to the journal: • structure-property relationships • analytical methods • chemical, enzymatic and physical modifications • biosynthesis • natural functions • interactions with other materials Topics not of interest to the journal: • biological, physiological and pharmacological aspects of non-carbohydrate; molecules attached to, or mixed with, carbohydrate polymers, unless the polysaccharide has a relevant and specific role; • materials science of biocomposites where there is no mention of any specific carbohydrate polymer, or the role of the carbohydrate polymer is not the major proportion of the study; • polyalkanoates, polylactic acid, or lignin. • routine studies of extraction yields without characterisation of the extracted polysaccharide under the different conditions. • routine studies of complexation of a drug with a single cyclodextrin. • studies of newly discovered natural polysaccharides or new polysaccharide derivatives where the structure of the polysaccharide (derivative) is unknown. • production and isolation of enzymes which act on polysaccharides (studies on the mode of action of an enzyme on a polysaccharide are within the journal scope) • carbohydrate oligomers where the degree of polymerization is less than four • treatments of cotton fabrics and cellulose-based paper where the research is largely not about the component cellulose itself; • use of carbohydrate polymers as a support material (e.g. in enzyme immobilization, chromatography, etc.) where there is no specific involvement of the chemistry of the carbohydrate polymer.
收录载体
Original full-length research papers Review papers
微信二维码
  • 微信公众号二维码
  • 关注官方微信公众号
  • 微信二维码
  • 微信扫码联系客服
平台客服